1
|
Samuelsson J, Leśko M, Thunberg L, Weinmann AL, Limé F, Enmark M, Fornstedt T. Fundamental investigation of impact of water and TFA additions in peptide sub/supercritical fluid separations. J Chromatogr A 2024; 1732:465203. [PMID: 39096781 DOI: 10.1016/j.chroma.2024.465203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024]
Abstract
The retention of three peptides was studied under analytical and overloaded conditions at different concentrations of trifluoroacetic acid (TFA) and water added to the co-solvent methanol (MeOH). Four columns with different stationary phase properties, i.e., silica, diol, 2-ethylpyridine and cyanopropyl (CN) columns, were evaluated in this investigation. The overall aim was to get a deeper understanding on how column chemistry as well as water and TFA in the co-solvent affect the analytical and overloaded elution profiles using multivariate design of experiments and adsorption measurements of co-solvent components. Multivariate experimental design modeling indicated that water had on average around five times higher effect on the retention than the addition of TFA. The results also showed that the retention increases with the addition of TFA and water to the co-solvent on all columns except the CN column, on which the retention decreased. When examining the effect of adding water to the co-solvent, evidence of a hydrophilic interaction liquid chromatography (HILIC)-like retention mechanism was found on the three other columns with more polar stationary phases. However, on the CN column water acted as an additive, decreasing the retention due to competition with the peptide for available adsorption surface. Adsorption isotherm measurements of the polar solvent MeOH showed that MeOH adsorbs much weaker on the CN column than on the other columns. Addition of TFA and water to the co-solvent substantially sharpened the elution profiles under both overloaded and analytical conditions. Adding a small amount of TFA (from 0 % to 0.05 %) to the co-solvent substantially improved the peak shape of the elution profiles, while further addition (from 0.05 % to 0.15 %) had only a minor effect on the elution profile shape. The reduced retention on the CN column could not be explained by TFA adsorption, which was very weak on all studied columns (retention factor, 0.05-0.15). One could therefore speculate that the ion-pairing complex formed between the peptide and TFA in the mobile phase, reduce the retention due to its reduced polarity. On the other columns displaying HILIC-like properties, the TFA probably just decreased the pH of the mobile phase, thereby promoting the partitioning of the peptide into the water-rich layer. Finally, peak deformation due to diluent-eluent mismatch was observed under overloaded conditions. This was most severe in the cases where MeOH adsorption to the stationary phase was strong and the peptides were only mildly retained. Adding 1,4-dioxan to the diluent resolved this issue.
Collapse
Affiliation(s)
- Jörgen Samuelsson
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden.
| | - Marek Leśko
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden
| | - Linda Thunberg
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Langborg Weinmann
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Martin Enmark
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden
| | - Torgny Fornstedt
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad SE-651 88, Sweden.
| |
Collapse
|
2
|
Listro R, Marra A, Cavalloro V, Rossino G, Linciano P, Rossi D, Casali E, De Amici M, Mazzeo G, Longhi G, Fusè M, Dondio G, Pellavio G, Laforenza U, Schepmann D, Wünsch B, Collina S. Sigma receptor and aquaporin modulators: chiral resolution, configurational assignment, and preliminary biological profile of RC752 enantiomers. J Pharm Biomed Anal 2024; 239:115902. [PMID: 38101238 DOI: 10.1016/j.jpba.2023.115902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
The key role of chiral small molecules in drug discovery programs has been deeply investigated throughout last decades. In this context, our previous studies highlighted the influence of the absolute configuration of different stereocenters on the pharmacokinetic, pharmacodynamic and functional properties of promising Sigma receptor (SR) modulators. Thus, starting from the racemic SR ligand RC752, we report herein the isolation of the enantiomers via enantioselective separation with both HPLC and SFC. After optimization of the eco-sustainable chiral SFC method, both enantiomers were obtained in sufficient amount (tens of mg) and purity (ee up to 95%) to allow their characterization and initial biological investigation. Both enantiomers a) displayed a high affinity for the S1R subtype (Ki = 15.0 ± 1.7 and 6.0 ± 1.2 nM for the (S)- and (R)-enantiomer, respectively), but only negligible affinity toward the S2R (> 350 nM), and b) were rapidly metabolized when incubated with mouse and human hepatic microsomes. Furthermore, the activity on AQP-mediated water permeability indicated a different functional profile for the enantiomers in terms of modulatory effect on the peroxiporins gating.
Collapse
Affiliation(s)
- Roberta Listro
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Annamaria Marra
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Valeria Cavalloro
- Department of Earth and Environmental Sciences, University of Pavia, Via Sant 'Epifanio 14, 27100 Pavia, Italy
| | - Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Emanuele Casali
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Giuseppe Mazzeo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Marco Fusè
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giulio Dondio
- Aphad SrL, Via della Resistenza, 65, Buccinasco 20090, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Dirk Schepmann
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, Münster D-48149, Germany
| | - Bernhard Wünsch
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, Münster D-48149, Germany; Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
3
|
Hondo T, Miyake Y, Toyoda M. A Method for High Throughput Free Fatty Acids Determination in a Small Section of Bovine Liver Tissue Using Supercritical Fluid Extraction Combined with Supercritical Fluid Chromatography-Medium Vacuum Chemical Ionization Mass Spectrometry. Mass Spectrom (Tokyo) 2024; 13:A0141. [PMID: 38274031 PMCID: PMC10806282 DOI: 10.5702/massspectrometry.a0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
A novel ionization technique named medium vacuum chemical ionization (MVCI) mass spectrometry (MS), which is a chemical ionization using oxonium (H3O+) and hydroxide (OH-) formed from water, has excellent compatibility with the supercritical fluid extraction (SFE)/supercritical fluid chromatography (SFC). We have studied a method to determine free fatty acids (FFAs) in a small section of bovine liver tissue using SFE/SFC-MVCI MS analysis without further sample preparation. A series of FFA molecules interact with the C18 stationary phase, exhibiting broad chromatographic peaks when using a non-modified CO2 as the mobile phase. It can be optimized by adding a small content of methanol to the mobile phase as a modifier; however, it may dampen the ionization efficiency of MVCI since the proton affinity of methanol is slightly higher than water. We have carefully evaluated the modifier content on the ion detection and column efficiencies. The obtained result showed that an optimized performance was in the range of 1 to 2% methanol-modified CO2 mobile phase for both column efficiency and peak intensity. Higher methanol content than 2% degrades both peak intensity and column efficiency. Using optimized SFC conditions, a section of bovine liver tissue sliced for 14 µm thickness by 1 mm square, which is roughly estimated as about 3300 hepatocytes, was applied to determine 18 FFAs amounts for carbon chains of C12-C24. An amount of each tested FFA was estimated as in the range of 0.07 to 2.6 fmol per cell.
Collapse
Affiliation(s)
- Toshinobu Hondo
- Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan
- MS-Cheminformatics LLC, 2–13–21 Sasao-nishi, Toin, Inabe, Mie 511–0231, Japan
| | - Yumi Miyake
- Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan
| | - Michisato Toyoda
- Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan
| |
Collapse
|
4
|
Dispas A, Sacré PY, Ziemons E, Hubert P. Emerging analytical techniques for pharmaceutical quality control: Where are we in 2022? J Pharm Biomed Anal 2022; 221:115071. [PMID: 36179505 DOI: 10.1016/j.jpba.2022.115071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 12/19/2022]
Abstract
Quality control is a fundamental and critical activity in the pharmaceutical industry that guarantees the quality of medicines. QC analyses are currently performed using several well-known techniques, mainly liquid and gas chromatography. However, current trends are focused on the development of new techniques to reduce analysis time and cost, to improve the performances and decrease ecological footprint. In this context, analytical scientists developed and studied emerging technologies based on spectroscopy and chromatography. The present review aims to give an overview of the recent development of vibrational spectroscopy, supercritical fluid chromatography and multi-dimensional chromatography. Selected emerging techniques are discussed using SWOT analysis and published pharmaceutical QC applications are discussed.
Collapse
Affiliation(s)
- Amandine Dispas
- University of Liege (ULiege), CIRM, Laboratory of Pharmaceutical Analytical Chemistry, Liège, Belgium; University of Liege (ULiege), CIRM, Laboratory for the Analysis of Medicines, Liège, Belgium.
| | - Pierre-Yves Sacré
- University of Liege (ULiege), CIRM, Laboratory of Pharmaceutical Analytical Chemistry, Liège, Belgium
| | - Eric Ziemons
- University of Liege (ULiege), CIRM, Laboratory of Pharmaceutical Analytical Chemistry, Liège, Belgium
| | - Philippe Hubert
- University of Liege (ULiege), CIRM, Laboratory of Pharmaceutical Analytical Chemistry, Liège, Belgium
| |
Collapse
|