1
|
Massie PL, Garcia M, Decker A, Liu R, MazloumiBakhshayesh M, Kulkarni D, Justus MP, Gallardo J, Abrums A, Markle K, Pace C, Campen M, Clark RM. Essential and Non-Essential Metals and Metalloids and Their Role in Atherosclerosis. Cardiovasc Toxicol 2025; 25:841-866. [PMID: 40251456 DOI: 10.1007/s12012-025-09998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Peripheral arterial disease (PAD) is becoming more prevalent in the aging developed world and can have significant functional impacts on patients. There is a recent recognition that environmental toxicants such as circulating metals and metalloids may contribute to the pathogenesis of atherosclerotic disease, but the mechanisms are complex. While the broad toxic biologic effects of metals in human systems have been extensively reviewed, the role of non-essential exposure and essential metal aberrancy in PAD specifically is less frequently discussed. This review of the literature describes current scientific knowledge regarding the individual roles several major metals and metalloids play in atherogenesis and highlights areas where a dearth of data exist. The roles of lead (Pb), arsenic (As), cadmium (Cd), iron (Fe), copper (Cu), selenium (Se) are included. Contemporary outcomes of therapeutic trials aimed at chelation therapy of circulating metals to impact cardiovascular outcomes are also discussed. This review highlights the supported notion of differential metal presence within peripheral plaques themselves, although distinguishing their roles within these plaques requires further illumination.
Collapse
Affiliation(s)
- Pierce L Massie
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Aerlin Decker
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Milad MazloumiBakhshayesh
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Deepali Kulkarni
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew P Justus
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Jorge Gallardo
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Avalon Abrums
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Kristin Markle
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Carolyn Pace
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Ross M Clark
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA.
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, USA.
| |
Collapse
|
2
|
Gao Y, Wang B, Hu M, Ma Y, Zheng B. The Role of Iron in Atherosclerosis and its Association with Related Diseases. Curr Atheroscler Rep 2024; 27:1. [PMID: 39520606 DOI: 10.1007/s11883-024-01251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE OF REVIEW This review aims to elucidate the multifaceted role of iron in the pathogenesis of atherosclerosis. The primary objective is to summarize recent advances in understanding how iron contributes to atherosclerosis through various cellular mechanisms. Additionally, the review explores the therapeutic implications of targeting iron metabolism in the prevention and treatment of cardiovascular diseases. RECENT FINDINGS A growing body of literature suggests that excess iron accelerates the progression of atherosclerosis, with the deleterious form of iron, non-transferrin-bound iron (NTBI), particularly exacerbating this process. Furthermore, iron overload has been demonstrated to play a pivotal role in endothelial cells, vascular smooth muscle cells, and macrophages, contributing to plaque instability and disease progression by promoting lipid peroxidation, oxidative stress, inflammatory responses, and ferroptosis. Iron plays a complex role in atherosclerosis, influencing multiple cellular processes and promoting disease progression. By promoting oxidative stress, inflammation, and ferroptosis, iron exacerbates endothelial dysfunction, smooth muscle cell calcification, and the formation of macrophage-derived foam cells. Targeted therapies focusing on iron metabolism have proven effective in treating atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
- Yingbo Gao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Boda Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mengrui Hu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuhan Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
3
|
Affiliation(s)
- Sandeep Poddar
- Vivekananda Institute of Medical Sciences, Ramakrishna Mission Seva Pratishthan, 99, Sarat Bose Road, Kolkata 700 026, West Bengal, India
| |
Collapse
|
4
|
Doyard M, Chappard D, Leroyer P, Roth MP, Loréal O, Guggenbuhl P. Decreased Bone Formation Explains Osteoporosis in a Genetic Mouse Model of Hemochromatosiss. PLoS One 2016; 11:e0148292. [PMID: 26829642 PMCID: PMC4734777 DOI: 10.1371/journal.pone.0148292] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/15/2016] [Indexed: 01/19/2023] Open
Abstract
Osteoporosis may complicate iron overload diseases such as genetic hemochromatosis. However, molecular mechanisms involved in the iron-related osteoporosis remains poorly understood. Recent in vitro studies support a role of osteoblast impairment in iron-related osteoporosis. Our aim was to analyse the impact of excess iron in Hfe-/- mice on osteoblast activity and on bone microarchitecture. We studied the bone formation rate, a dynamic parameter reflecting osteoblast activity, and the bone phenotype of Hfe-/- male mice, a mouse model of human hemochromatosis, by using histomorphometry. Hfe-/- animals were sacrificed at 6 months and compared to controls. We found that bone contains excess iron associated with increased hepatic iron concentration in Hfe-/- mice. We have shown that animals with iron overload have decreased bone formation rate, suggesting a direct impact of iron excess on active osteoblasts number. For bone mass parameters, we showed that iron deposition was associated with bone loss by producing microarchitectural impairment with a decreased tendency in bone trabecular volume and trabecular number. A disorganization of trabecular network was found with marrow spaces increased, which was confirmed by enhanced trabecular separation and star volume of marrow spaces. These microarchitectural changes led to a loss of connectivity and complexity in the trabecular network, which was confirmed by decreased interconnectivity index and increased Minkowski's fractal dimension. Our results suggest for the first time in a genetic hemochromatosis mouse model, that iron overload decreases bone formation and leads to alterations in bone mass and microarchitecture. These observations support a negative effect of iron on osteoblast recruitment and/or function, which may contribute to iron-related osteoporosis.
Collapse
Affiliation(s)
- Mathilde Doyard
- INSERM UMR U991, F- 35033, Rennes, France
- Université de Rennes 1, IFR 140, F- 35043, Rennes, France
| | - Daniel Chappard
- GEROM Groupe Etude Remodelage Osseux et bioMatériaux LHEA, IRIS-IBM, Institut de biologie en santé, CHU, F- 49933, Angers, France
| | - Patricia Leroyer
- INSERM UMR U991, F- 35033, Rennes, France
- Université de Rennes 1, IFR 140, F- 35043, Rennes, France
| | | | - Olivier Loréal
- INSERM UMR U991, F- 35033, Rennes, France
- Université de Rennes 1, IFR 140, F- 35043, Rennes, France
- Service des Maladies du Foie, Hôpital Pontchaillou, CHU, F- 35033, Rennes, France
| | - Pascal Guggenbuhl
- INSERM UMR U991, F- 35033, Rennes, France
- Université de Rennes 1, IFR 140, F- 35043, Rennes, France
- Service de Rhumatologie, Hôpital Sud, CHU, F- 35033, Rennes, France
- * E-mail:
| |
Collapse
|
5
|
Guggenbuhl P, Filmon R, Mabilleau G, Baslé MF, Chappard D. Iron inhibits hydroxyapatite crystal growth in vitro. Metabolism 2008; 57:903-10. [PMID: 18555830 DOI: 10.1016/j.metabol.2008.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 02/23/2008] [Indexed: 11/17/2022]
Abstract
Hemochromatosis is a known cause of osteoporosis in which the pathophysiology of bone loss is largely unknown and the role of iron remains questionable. We have investigated the effects of iron on the growth of hydroxyapatite crystals in vitro on carboxymethylated poly(2-hydroxyethyl methacrylate) pellets. This noncellular and enzyme-independent model mimics the calcification of woven bone (composed of calcospherites made of hydroxyapatite crystals). Polymer pellets were incubated with body fluid containing iron at increasing concentrations (20, 40, 60 micromol/L). Hydroxyapatite growth was studied by chemical analysis, scanning electron microscopy, and Raman microscopy. When incubated in body fluid containing iron, significant differences were observed with control pellets. Iron was detected at a concentration of 5.41- to 7.16-fold that of controls. In pellets incubated with iron, there was a approximately 3- to 4-fold decrease of Ca and P and a approximately 1.3- to 1.4-fold increase in the Ca/P ratio. There was no significant difference among the iron groups of pellets, but a trend to a decrease of Ca with the increase of iron concentration was noted. Calcospherite diameters were significantly lower on pellets incubated with iron. Raman microspectroscopy showed a decrease in crystallinity (measured by the full width of the half height of the 960 Deltacm(-1) band) with a significant increase in carbonate substitution (measured by the intensity ratio of 1071 to 960 Deltacm(-1) band). Energy dispersive x-ray analysis identified iron in the calcospherites. In vitro, iron is capable to inhibit bone crystal growth with significant changes in crystallinity and carbonate substitution.
Collapse
|
6
|
Loréal O, Ropert M, Mosser A, Déhais V, Deugnier Y, David V, Brissot P, Jouanolle AM. Physiopathologie et génétique de l'hémochromatose HFE de type 1. Presse Med 2007; 36:1271-7. [PMID: 17521857 DOI: 10.1016/j.lpm.2007.03.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 03/22/2007] [Indexed: 01/19/2023] Open
Abstract
Hereditary type 1 HFE hemochromatosis is associated with homozygosity for the p.Cys282Tyr mutation of the HFE gene (C282Y mutation). The p.Cys282Tyr mutation of the HFE gene leads to an abnormal reduction in hepatic expression of hepcidin, a protein that appears to control the release of iron from enterocytes and macrophages towards plasma. Abnormally low hepcidin levels promote an increase in the bioavailability of plasma iron, characterized by elevated transferrin saturation and the appearance of non transferrin bound iron. This nontransferrin-bound iron is avidly taken up by the liver, heart, and pancreas, the principal target organs for systemic iron overload. The variable penetrance of this disease is related to environmental and genetic factors. Among the genetic factors, mutations of some newly identified genes may aggravate the phenotype of iron overload associated with homozygosity for the p.Cys282Tyr mutation of the HFE gene; these new genes include those of hemojuvelin (HJV), transferrin receptor 2 (TfR2), and hepcidin (HAMP).
Collapse
|
7
|
Brissot P, De Bels F. [Management of hemochromatosis linked to HFE gene]. Presse Med 2007; 36:1295-300. [PMID: 17553656 DOI: 10.1016/j.lpm.2006.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 12/31/2006] [Indexed: 11/25/2022] Open
Abstract
Phenotypic expression of the homozygous C282Y/C282Y mutation of the HFE gene has been classified in five stages, and appropriate management recommended for each stage. Phlebotomy is indicated for stages>or=2, that is, with elevated transferrin saturation and serum ferritin levels >300 microg/L in men and >200 microg/L in women. Maximal volume per phlebotomy is 7 mL/kg and should not exceed 550 mL. The main goal of this iron-depletion therapy is to reach and maintain serum ferritin levels<or=50 microg/L. Phlebotomies performed at home by nurses should be encouraged, under strict conditions. Because genetic counseling and family screening should follow individual diagnosis, the physician must recommend that the patient inform siblings, adult children, and parents. Screening should include simultaneous genetic testing and serum iron markers.
Collapse
Affiliation(s)
- Pierre Brissot
- Service des maladies du foie, Inserm U-522 et IFR140, CHU Pontchaillou, Rennes.
| | | |
Collapse
|
8
|
Del Castillo-Rueda A, Khosravi-Shahi P. Fenotipo, genotipo e historia de las enfermedades de sobrecarga de hierro. Med Clin (Barc) 2006; 126:676; author reply 676-7. [PMID: 16759570 DOI: 10.1157/13087847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Abstract
The term hemochromatosis encompasses at least four types of genetic iron overload conditions, most of them recently distinguished from one another as a result of the identification of a series of genes related to iron metabolism. At least three of these entities (HFE hemochromatosis, juvenile hemochromatosis and transferrin receptor 2 hemochromatosis) involve systemic hepcidin deficiency as a key pathogenetic factor. Major advances in the management of hemochromatosis influence the diagnostic approach to the disease, with the development of an overall non invasive strategy, mainly based on clinical, biological (iron parameters and genetic testing), and imaging (especially magnetic resonance imaging) data. Therapeutic management remains, on the curative side, dominated by phlebotomy (venesection), practical aspects of which have been recently revisited by the Guidelines Department of the French “Haute Autorité de Santé.” However, innovative treatment approaches, based on the improved pathophysiological understanding of these diseases and the progress in iron chelation therapy, are emerging. Preventive therapy, focused on family screening, remains a key part of the management of hemochromatosis.
Collapse
|
10
|
Abstract
Abstract
The term hemochromatosis encompasses at least four types of genetic iron overload conditions, most of them recently distinguished from one another as a result of the identification of a series of genes related to iron metabolism. At least three of these entities (HFE hemochromatosis, juvenile hemochromatosis and transferrin receptor 2 hemochromatosis) involve systemic hepcidin deficiency as a key pathogenetic factor. Major advances in the management of hemochromatosis influence the diagnostic approach to the disease, with the development of an overall non invasive strategy, mainly based on clinical, biological (iron parameters and genetic testing), and imaging (especially magnetic resonance imaging) data. Therapeutic management remains, on the curative side, dominated by phlebotomy (venesection), practical aspects of which have been recently revisited by the Guidelines Department of the French “Haute Autorité de Santé.” However, innovative treatment approaches, based on the improved pathophysiological understanding of these diseases and the progress in iron chelation therapy, are emerging. Preventive therapy, focused on family screening, remains a key part of the management of hemochromatosis.
Collapse
Affiliation(s)
- Pierre Brissot
- Service des Maladies du Foie, University Hospital Pontchaillou, Rennes, France.
| | | |
Collapse
|