1
|
Wilkes MC, Chae HD, Scanlon V, Cepika AM, Wentworth EP, Saxena M, Eskin A, Chen Z, Glader B, Grazia Roncarolo M, Nelson SF, Sakamoto KM. SATB1 Chromatin Loops Regulate Megakaryocyte/Erythroid Progenitor Expansion by Facilitating HSP70 and GATA1 Induction. Stem Cells 2023; 41:560-569. [PMID: 36987811 PMCID: PMC10267687 DOI: 10.1093/stmcls/sxad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/30/2023]
Abstract
Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome associated with severe anemia, congenital malformations, and an increased risk of developing cancer. The chromatin-binding special AT-rich sequence-binding protein-1 (SATB1) is downregulated in megakaryocyte/erythroid progenitors (MEPs) in patients and cell models of DBA, leading to a reduction in MEP expansion. Here we demonstrate that SATB1 expression is required for the upregulation of the critical erythroid factors heat shock protein 70 (HSP70) and GATA1 which accompanies MEP differentiation. SATB1 binding to specific sites surrounding the HSP70 genes promotes chromatin loops that are required for the induction of HSP70, which, in turn, promotes GATA1 induction. This demonstrates that SATB1, although gradually downregulated during myelopoiesis, maintains a biological function in early myeloid progenitors.
Collapse
Affiliation(s)
- Mark C Wilkes
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Hee-Don Chae
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Vanessa Scanlon
- Department of Laboratory Medicine, Yale Stem Cell Center, Yale Cooperative Center of Excellence in Hematology, Yale School of Medicine, New Haven, CT, USA
| | - Alma-Martina Cepika
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ethan P Wentworth
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Mallika Saxena
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ascia Eskin
- Department of Pathology and Laboratory Medicine¸ David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Zugen Chen
- Department of Pathology and Laboratory Medicine¸ David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Bert Glader
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Maria Grazia Roncarolo
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stanley F Nelson
- Department of Pathology and Laboratory Medicine¸ David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Zhang H, Wan GZ, Wang YY, Chen W, Guan JZ. The role of erythrocytes and erythroid progenitor cells in tumors. Open Life Sci 2022; 17:1641-1656. [PMID: 36567722 PMCID: PMC9755711 DOI: 10.1515/biol-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 12/23/2022] Open
Abstract
In the current research context of precision treatment of malignant tumors, the advantages of immunotherapy are unmatched by conventional antitumor therapy, which can prolong progression-free survival and overall survival. The search for new targets and novel combination therapies can improve the efficacy of immunotherapy and reduce adverse effects. Since current research targets for immunotherapy mainly focus on lymphocytes, little research has been done on erythrocytes. Nucleated erythroid precursor stem cells have been discovered to play an essential role in tumor progression. Researchers are exploring new targets and therapeutic approaches for immunotherapy from the perspective of erythroid progenitor cells (EPCs). Recent studies have shown that different subtypes of EPCs have specific surface markers and distinct biological roles in tumor immunity. CD45+ EPCs are potent myeloid-derived suppressor cell-like immunosuppressants that reduce the patient's antitumor immune response. CD45- EPCs promote tumor invasion and metastasis by secreting artemin. A specific type of EPC also promotes angiogenesis and provides radiation protection. Therefore, EPCs may be involved in tumor growth, infiltration, and metastasis. It may also be an important cause of anti-angiogenesis and immunotherapy resistance. This review summarizes recent research advances in erythropoiesis, EPC features, and their impacts and processes on tumors.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100091, China,Department of Oncology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100071, China,Postgraduate Department of Hebei North University, Zhangjiakou 075000, China
| | - Guang-zhi Wan
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100071, China
| | - Yu-ying Wang
- Department of Oncology, First Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Wen Chen
- Department of Pathology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100091, China
| | - Jing-Zhi Guan
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100071, China
| |
Collapse
|
3
|
Role of Extrinsic Apoptotic Signaling Pathway during Definitive Erythropoiesis in Normal Patients and in Patients with β-Thalassemia. Int J Mol Sci 2020; 21:ijms21093325. [PMID: 32397135 PMCID: PMC7246929 DOI: 10.3390/ijms21093325] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Apoptosis is a process of programmed cell death which has an important role in tissue homeostasis and in the control of organism development. Here, we focus on information concerning the role of the extrinsic apoptotic pathway in the control of human erythropoiesis. We discuss the role of tumor necrosis factor α (TNFα), tumor necrosis factor ligand superfamily member 6 (FasL), tumor necrosis factor-related apoptosis-inducing (TRAIL) and caspases in normal erythroid maturation. We also attempt to initiate a discussion on the observations that mature erythrocytes contain most components of the receptor-dependent apoptotic pathway. Finally, we point to the role of the extrinsic apoptotic pathway in ineffective erythropoiesis of different types of β-thalassemia.
Collapse
|
4
|
Valent P, Büsche G, Theurl I, Uras IZ, Germing U, Stauder R, Sotlar K, Füreder W, Bettelheim P, Pfeilstöcker M, Oberbauer R, Sperr WR, Geissler K, Schwaller J, Moriggl R, Béné MC, Jäger U, Horny HP, Hermine O. Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts. Haematologica 2018; 103:1593-1603. [PMID: 30076180 PMCID: PMC6165792 DOI: 10.3324/haematol.2018.192518] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022] Open
Abstract
Pathological erythropoiesis with consequent anemia is a leading cause of symptomatic morbidity in internal medicine. The etiologies of anemia are complex and include reactive as well as neoplastic conditions. Clonal expansion of erythroid cells in the bone marrow may result in peripheral erythrocytosis and polycythemia but can also result in anemia when clonal cells are dysplastic and have a maturation arrest that leads to apoptosis and hinders migration, a constellation typically seen in the myelodysplastic syndromes. Rarely, clonal expansion of immature erythroid blasts results in a clinical picture resembling erythroid leukemia. Although several mechanisms underlying normal and abnormal erythropoiesis and the pathogenesis of related disorders have been deciphered in recent years, little is known about specific markers and targets through which prognosis and therapy could be improved in anemic or polycythemic patients. In order to discuss new markers, targets and novel therapeutic approaches in erythroid disorders and the related pathologies, a workshop was organized in Vienna in April 2017. The outcomes of this workshop are summarized in this review, which includes a discussion of new diagnostic and prognostic markers, the updated WHO classification, and an overview of new drugs used to stimulate or to interfere with erythropoiesis in various neoplastic and reactive conditions. The use and usefulness of established and novel erythropoiesis-stimulating agents for various indications, including myelodysplastic syndromes and other neoplasms, are also discussed.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria .,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Austria
| | - Guntram Büsche
- Institute of Pathology, Medizinische Hochschule Hannover, Germany
| | - Igor Theurl
- Department of Internal Medicine II, Medical University Innsbruck, Austria
| | - Iris Z Uras
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Düsseldorf, Germany
| | - Reinhard Stauder
- Department of Internal Medicine V, Medical University Innsbruck, Austria
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Austria
| | - Wolfgang Füreder
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
| | - Peter Bettelheim
- First Department of Internal Medicine, Elisabethinen Hospital, Linz, Austria
| | - Michael Pfeilstöcker
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Austria.,3Medical Department, Hanusch Hospital, Vienna, Austria
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, Medical University of Vienna, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Austria
| | - Klaus Geissler
- 5Medical Department for Hematology and Oncology, Hospital Hietzing, Vienna, Austria
| | - Jürg Schwaller
- Department of Biomedicine, University Children's Hospital Basel, Switzerland
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Department of Biomedical Science, Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Marie C Béné
- Hematology Biology, University Hospital, Nantes, France
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria.,Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilian University, Munich, Germany
| | - Olivier Hermine
- Imagine Institute, INSERM U 1163, CNRS 8654, Université Paris Descartes, Sorbonne, Paris Cité, France
| |
Collapse
|
5
|
Allogeneic bone marrow transplant in the absence of cytoreductive conditioning rescues mice with β-thalassemia major. Blood Adv 2017; 1:2421-2432. [PMID: 29296892 DOI: 10.1182/bloodadvances.2017009449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/24/2017] [Indexed: 02/08/2023] Open
Abstract
β-thalassemia is a group of inherited blood disorders that result in defects in β-globin chain production. Cooley anemia (CA), or β-thalassemia major, is the most severe form of the disease and occurs when an individual has mutations in both copies of the adult β-globin gene. Patients with CA fail to make adult hemoglobin, exhibit ineffective erythropoiesis, experience severe anemia, and are transfusion dependent for life. Currently, allogeneic bone marrow transplantation (BMT) is the only cure; however, few patients have suitable donors for this procedure, which has significant morbidity and mortality. In this study, a novel humanized murine model of CA is rescued from lethal anemia by allogeneic BMT in the absence of cytoreductive conditioning. A single intravenous postnatal injection of allogeneic bone marrow results in stable, mixed hematopoietic chimerism. Five months after transplantation, donor cells accounted for approximately 90% of circulating erythrocytes and up to 15% of hematopoietic stem and progenitor cells. Transplanted mice are transfusion independent, have marked improvement of hematological indices, exhibit no growth retardation or signs of graft-versus-host disease, and are fertile. This study describes a method for the consistent engraftment of allogeneic donor hematopoietic cells that rescues a humanized mouse model of CA from lethal anemia, all in the absence of toxic cytoreductive conditioning.
Collapse
|