1
|
Fazilat A, Roshani S, Moghadam FM, Valilo M. An overview of the relationship between melatonin and drug resistance in cancers. Horm Mol Biol Clin Investig 2025:hmbci-2025-0016. [PMID: 40418779 DOI: 10.1515/hmbci-2025-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/26/2025] [Indexed: 05/28/2025]
Abstract
The most common methods of treating cancer are surgery, chemotherapy, and radiotherapy. However, given that some cancers are not operable, the best method is chemotherapy and radiotherapy. Over time, people become resistant to chemotherapy drugs, and increasing the dose of the drug leads to damage to normal cells. In this article, various sources such as Google Scholar, PubMed, and Semantic Scholar were used, and articles between 1997 and 2025 that were relevant to our topic were selected. Various factors are involved in drug resistance. Melatonin is a hormone that has various roles in the body. One of its most important functions is regulating the circadian rhythm of sleep and its anti-inflammatory and antioxidant properties. According to studies, melatonin plays a role in the treatment of some diseases and cancers. The roles of melatonin in cancer treatment include anti-apoptotic, anti-angiogenic, and anti-migratory effects, as well as drug resistance and cell cycle regulation. As mentioned, one of the main reasons for the failure of cancer treatment is drug resistance, and the role of melatonin in drug resistance in cancers has been proven. Therefore, in this study, our goal is to investigate the mechanisms through which melatonin plays a role in drug resistance in different types of cancer.
Collapse
Affiliation(s)
- Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, Breast Cancer Research Center, ACECR, Tehran, Iran
| | - Salomeh Roshani
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, 37555 Urmia University of Medical Sciences , Urmia, Iran
| |
Collapse
|
2
|
Tian Y, Wang X, Wu C, Qiao J, Jin H, Li H. A protracted war against cancer drug resistance. Cancer Cell Int 2024; 24:326. [PMID: 39342202 PMCID: PMC11439304 DOI: 10.1186/s12935-024-03510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Currently, even the most effective anti-cancer therapies are often limited by the development of drug resistance and tumor relapse, which is a major challenge facing current cancer research. A deep understanding of the molecular and biochemical bases of drug efficacy that can help predict the clinical drug resistance, coupled with the evolution of systematic genomic and proteomic technologies, have facilitated studies identifying and elucidating the underlying mechanisms. In this review, we focus on several important issues on cancer drug resistance and provide a framework for understanding the common ways by which cancers develop resistance to therapeutic agents. With the increasing arsenal of novel anticancer agents and techniques, there are now unprecedented opportunities to understand and overcome drug resistance. The proteolysis targeting chimera (PROTAC) technology, immunotherapy, nanomedicine, and real-time monitoring of drug response all provide effective approaches for combating drug resistance. In addition to the advancement of therapeutic technologies, the revolution of treatment concept is also of great importance. We can take advantage of the interplay between drug sensitive and resistant subclones for combating cancer. However, there remains a long way to go in the protracted war against cancer drug resistance.
Collapse
Affiliation(s)
- Yuan Tian
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, P.R. China
| | - Xiaowei Wang
- Department of Thoracic Surgery/Clinical Research Center, The First Affiliated Hospital of Navy Medical University, 168 Changhai Road, Shanghai, 200433, P.R. China
| | - Cong Wu
- Department of Thoracic Surgery/Clinical Research Center, The First Affiliated Hospital of Navy Medical University, 168 Changhai Road, Shanghai, 200433, P.R. China
| | - Jiaming Qiao
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, P.R. China
| | - Hai Jin
- Department of Thoracic Surgery/Clinical Research Center, The First Affiliated Hospital of Navy Medical University, 168 Changhai Road, Shanghai, 200433, P.R. China.
| | - Huafei Li
- School of Lifesciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, P.R. China.
| |
Collapse
|
3
|
Li T, Zhou S, Wang L, Zhao T, Wang J, Shao F. Docetaxel, cyclophosphamide, and epirubicin: application of PBPK modeling to gain new insights for drug-drug interactions. J Pharmacokinet Pharmacodyn 2024; 51:367-384. [PMID: 38554227 DOI: 10.1007/s10928-024-09912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/20/2024] [Indexed: 04/01/2024]
Abstract
The new adjuvant chemotherapy of docetaxel, epirubicin, and cyclophosphamide has been recommended for treating breast cancer. It is necessary to investigate the potential drug-drug Interactions (DDIs) since they have a narrow therapeutic window in which slight differences in exposure might result in significant differences in treatment efficacy and tolerability. To guide clinical rational drug use, this study aimed to evaluate the DDI potentials of docetaxel, cyclophosphamide, and epirubicin in cancer patients using physiologically based pharmacokinetic (PBPK) models. The GastroPlus™ was used to develop the PBPK models, which were refined and validated with observed data. The established PBPK models accurately described the pharmacokinetics (PKs) of three drugs in cancer patients, and the predicted-to-observed ratios of all the PK parameters met the acceptance criterion. The PBPK model predicted no significant changes in plasma concentrations of these drugs during co-administration, which was consistent with the observed clinical phenomenon. Besides, the verified PBPK models were then used to predict the effect of other Cytochrome P450 3A4 (CYP3A4) inhibitors/inducers on these drug exposures. In the DDI simulation, strong CYP3A4 modulators changed the exposure of three drugs by 0.71-1.61 fold. Therefore, patients receiving these drugs in combination with strong CYP3A4 inhibitors should be monitored regularly to prevent adverse reactions. Furthermore, co-administration of docetaxel, cyclophosphamide, or epirubicin with strong CYP3A4 inducers should be avoided. In conclusion, the PBPK models can be used to further investigate the DDI potential of each drug and to develop dosage recommendations for concurrent usage by additional perpetrators or victims.
Collapse
Affiliation(s)
- Tongtong Li
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China
| | - Sufeng Zhou
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Lu Wang
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Tangping Zhao
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China
| | - Jue Wang
- Division of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Feng Shao
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Elzanaty KA, Omran GA, Elmahallawy EK, Albrakati A, Saleh AA, Dahran N, Alhegaili AS, Salahuddin A, Abd-El-Azim H, Noreldin A, Okda TM. Design and Optimization of Sesamol Nanosuspensions to Potentiate the Anti-Tumor Activity of Epirubicin against Ehrlich Solid Carcinoma-Bearing Mice. Pharmaceutics 2024; 16:937. [PMID: 39065634 PMCID: PMC11279961 DOI: 10.3390/pharmaceutics16070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
There is a growing interest in discovering natural sources of anti-cancer drugs. Sesamol (SES) is a phenolic compound with antitumor effects. The present study aimed to investigate the anticancer properties of SES and its nano-suspensions (SES-NS) combined with Epirubicin (EPI) in breast cancer (BC) using mice bearing a solid Ehrlich tumor. The study involved 35 female albino mice and investigated the effects of SES and EPI on tumor growth, proliferation, apoptosis, autophagy, angiogenesis, and oxidative stress. Methods including ELISA, qRT-PCR, and immunohistochemistry were utilized. The findings revealed reductions in tumor growth and proliferation using SES either alone or combined and evidenced by decreased AKT (AKT Serine/Threonine kinase1) levels, angiogenesis indicated by lower levels of VEGFR (vascular endothelial growth factor), and apoptosis demonstrated by elevated caspase3 and BAX levels. Furthermore, autophagy increased and was indicated by increased levels of beclin1 and lc3, along with decreased oxidative stress as evidenced by elevated TAC (total antioxidant capacity) and reduced MDA (malondialdehyde) levels. Interestingly, SES-NS demonstrated more significant effects at lower doses. In summary, this study underscores the potential of SES as a promising agent for BC treatment. Moreover, SES-NS potentiated the beneficial effects of EPI while mitigating its adverse effects.
Collapse
Affiliation(s)
- Kholoud A. Elzanaty
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| | - Gamal A. Omran
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| | - Ehab Kotb Elmahallawy
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, 14071 Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman A. Saleh
- Department of Pathology, College of Medicine, University of Hail, Hail 55428, Saudi Arabia;
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Alaa S. Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmad Salahuddin
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
- Department of Biochemistry, College of Pharmacy, Al-Ayen Iraqi University, Nasiriyah 64001, Iraq
| | - Heba Abd-El-Azim
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt;
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ahmed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Tarek M. Okda
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt (T.M.O.)
| |
Collapse
|
5
|
Yi YJ, Tang H, Pi PL, Zhang HW, Du SY, Ge WY, Dai Q, Zhao ZY, Li J, Sun Z. Melatonin in cancer biology: pathways, derivatives, and the promise of targeted delivery. Drug Metab Rev 2024; 56:62-79. [PMID: 38226647 DOI: 10.1080/03602532.2024.2305764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Melatonin, historically recognized for its primary role in regulating circadian rhythms, has expanded its influence particularly due to its wide range of biological activities. It has firmly established itself in cancer research. To highlight its versatility, we delved into how melatonin interacts with key signaling pathways, such as the Wnt/β-Catenin, PI3K, and NF-κB pathways, which play foundational roles in tumor development and progression. Notably, melatonin can intricately modulate these pathways, potentially affecting various cellular functions such as apoptosis, metastasis, and immunity. Additionally, a comprehensive review of current clinical studies provides a dual perspective. These studies confirm melatonin's potential in cancer management but also underscore its inherent limitations, particularly its limited bioavailability, which often relegates it to a supplementary role in treatments. Despite this limitation, there is an ongoing quest for innovative solutions and current advancements include the development of melatonin derivatives and cutting-edge delivery systems. By synthesizing the past, present, and future, this review provides a detailed overview of melatonin's evolving role in oncology, positioning it as a potential cornerstone in future cancer therapeutics.
Collapse
Affiliation(s)
- Yu-Juan Yi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hong Tang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peng-Lai Pi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | | | - Si-Yu Du
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wei-Ye Ge
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qi Dai
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Zi-Yan Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jia Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zheng Sun
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Zhou Y, Li Y, Wang H, Sun H, Su J, Fan Y, Xing W, Fu J. Mesenchymal Stem Cells Target Gastric Cancer and Deliver Epirubicin via Tunneling Nanotubes for Enhanced Chemotherapy. Curr Stem Cell Res Ther 2024; 19:1402-1413. [PMID: 38173205 DOI: 10.2174/011574888x287102240101060146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND A reduced effective local concentration significantly contributes to the unsatisfactory therapeutic results of epirubicin in gastric cancer. Mesenchymal stem cells exhibit targeted chemotaxis towards solid tumors and form tunneling nanotubes with tumor cells, facilitating the delivery of various substances. This study demonstrates the novelty of mesenchymal stem cells in releasing epirubicin into gastric cancer cells through tunneling nanotubes. OBJECTIVE Epirubicin delivery to gastric cancer cells using mesenchymal stem cells. METHODS In vitro transwell migration assays, live cell tracking, and in vivo targeting assays were used to demonstrate the chemotaxis of mesenchymal stem cells towards gastric cancer. We verified the targeted chemotaxis of mesenchymal stem cells towards gastric cancer cells and the epirubicin loading ability using a high-content imaging system (Equipment type:Operetta CLS). Additionally, tunneling nanotube formation and the targeted release of epirubicin-loaded mesenchymal stem cells co-cultured with gastric cancer cells through mesenchymal stem cell-tunneling nanotubes into gastric cancer cells was observed using Operetta CLS. RESULTS Mesenchymal stem cells demonstrated targeted chemotaxis towards gastric cancer, with effective epirubicin loading and tolerance. Co-culturing induced tunneling nanotube formation between these cells. Epirubicin-loaded mesenchymal stem cells were released into gastric cancer cells through tunneling nanotubes, significantly increasing their non-viability compared to the negative control group (p < 0.05). CONCLUSIONS We identified a novel approach for precisely targeting epirubicin release in gastric cancer cells. Therefore, mesenchymal stem cell-tunneling nanotubes could serve as a potential tool for targeted delivery of drugs, enhancing their chemotherapeutic effects in cancer cells.
Collapse
Affiliation(s)
- Yali Zhou
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yumin Li
- Key Laboratory of Digestive System Tumors, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Haibin Wang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Haolin Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Jing Su
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yaqiong Fan
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Wei Xing
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Jie Fu
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| |
Collapse
|
7
|
Tian Y, Lei Y, Wang Y, Lai J, Wang J, Xia F. Mechanism of multidrug resistance to chemotherapy mediated by P‑glycoprotein (Review). Int J Oncol 2023; 63:119. [PMID: 37654171 PMCID: PMC10546381 DOI: 10.3892/ijo.2023.5567] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/06/2023] [Indexed: 09/02/2023] Open
Abstract
Multidrug resistance (MDR) seriously limits the clinical application of chemotherapy. A mechanism underlying MDR is the overexpression of efflux transporters associated with chemotherapeutic drugs. P‑glycoprotein (P‑gp) is an ATP‑binding cassette (ABC) transporter, which promotes MDR by pumping out chemotherapeutic drugs and reducing their intracellular concentration. To date, overexpression of P‑gp has been detected in various types of chemoresistant cancer and inhibiting P‑gp‑related MDR has been suggested. The present review summarizes the mechanisms underlying MDR mediated by P‑gp in different tumors and evaluated the related signaling pathways, with the aim of improving understanding of the current status of P‑gp‑mediated chemotherapeutic resistance. This review focuses on the main mechanisms of inhibiting P‑gp‑mediated MDR, with the aim of providing a reference for the study of reversing P‑gp‑mediated MDR. The first mechanism involves decreasing the efflux activity of P‑gp by altering its conformation or hindering P‑gp‑chemotherapeutic drug binding. The second inhibitory mechanism involves inhibiting P‑gp expression to reduce efflux. The third inhibitory mechanism involves knocking out the ABCB1 gene. Potential strategies that can inhibit P‑gp include certain natural products, synthetic compounds and biological techniques. It is important to screen lead compounds or candidate techniques for P‑gp inhibition, and to identify inhibitors by targeting the relevant signaling pathways to overcome P‑gp‑mediated MDR.
Collapse
Affiliation(s)
- Yichen Tian
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yongrong Lei
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yani Wang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Jiejuan Lai
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
8
|
Nagai K, Tamura M, Murayama R, Fukuno S, Ito T, Konishi H. Development of multi-drug resistance to anticancer drugs in HepG2 cells due to MRP2 upregulation on exposure to menthol. PLoS One 2023; 18:e0291822. [PMID: 37733713 PMCID: PMC10513270 DOI: 10.1371/journal.pone.0291822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Menthol exerts relaxing, antibacterial, and anti-inflammatory activities, and is marketed as a functional food and therapeutic drug. AIM In the present study, the effects of menthol on the expression of multidrug resistance associated protein 2 (MRP2) and its association with the cytotoxicity of epirubicin (EPI) and cisplatin (CIS) were examined using HepG2 cells. METHODS The expression levels of target genes were examined by real-time PCR. The intracellular concentration of incorporated EPI was measured by high-performance liquid chromatography. Cell viability was evaluated by MTT analysis. RESULTS The expression of MRP2 mRNA was increased by exposing HepG2 cells to menthol for 24 hr. Consistent with a previous report suggesting an inverse correlation between MRP2 and Akt behavior, increased expression of MRP2 was also observed on suppression of the Akt function. Intracellular accumulation of EPI was significantly decreased by exposure of HepG2 cells to menthol, and a significant decrease in the intracellular concentration of EPI remaining was observed in HepG2 cells exposed to menthol. The decreased intracellular accumulation of EPI was significantly suppressed by treatment with MK-571, but not verapamil. Both EPI and CIS exerted cytocidal effects on HepG2 cells, but the decrease in cell viability was significantly attenuated by 24-hr menthol pre-exposure. CONCLUSION These results demonstrate that menthol causes hepatocellular carcinoma to acquire resistance to anticancer drugs such as EPI and CIS by MRP2 induction.
Collapse
Affiliation(s)
- Katsuhito Nagai
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Mayuko Tamura
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Ryuga Murayama
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Shuhei Fukuno
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Hiroki Konishi
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| |
Collapse
|
9
|
Mańka S, Smolewski P, Cebula-Obrzut B, Majchrzak A, Szmejda K, Witkowska M. Cytotoxic Activity of Melatonin Alone and in Combination with Doxorubicin and/or Dexamethasone on Diffuse Large B-Cell Lymphoma Cells in In Vitro Conditions. J Pers Med 2023; 13:1314. [PMID: 37763082 PMCID: PMC10532635 DOI: 10.3390/jpm13091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Melatonin (MLT), a pineal gland hormone, not only regulates circadian and seasonal rhythms, but also plays an important role in many aspects of human physiology and pathophysiology. MLT is of great interest as a natural substance with anti-cancer activities. The aim of this study was to assess the cytotoxicity and apoptosis of MLT, used alone or in combination with one of the most active anti-cancer drugs, doxorubicin (DOX), and a well-known anti-inflammatory drug, dexamethasone (DEX), on a diffuse large B-cell lymphoma (DLBCL)-derived cell line. The cytotoxicity and cell cycle distribution were measured using propidium iodide staining, while apoptosis was assessed using the annexin-V binding method. Additionally, to elucidate the mechanisms of action, caspase-3, -8, and -9 and a decline in the mitochondrial potential were determined using flow cytometry. MLT inhibited cell viability as well as induced apoptosis and cell cycle arrest at the G0/G1 phase. The pro-apoptotic effect was exerted through both the mitochondrial and caspase-dependent pathways. Furthermore, we observed increased cytotoxic and pro-apoptotic activity as well as the modulation of the cell cycle after the combination of MLT with DOX, DEX, or a combination of DOX + DEX, compared with both drugs or MLT used alone. Our findings confirm that MLT is a promising in vitro anti-tumour agent that requires further evaluation when used with other drugs active against DLBCL.
Collapse
Affiliation(s)
- Sylwia Mańka
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (S.M.); (P.S.); (B.C.-O.); (K.S.)
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (S.M.); (P.S.); (B.C.-O.); (K.S.)
| | - Barbara Cebula-Obrzut
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (S.M.); (P.S.); (B.C.-O.); (K.S.)
| | - Agata Majchrzak
- Department of Hematology, Copernicus Memorial Hospital, 93-510 Lodz, Poland;
| | - Klaudia Szmejda
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (S.M.); (P.S.); (B.C.-O.); (K.S.)
| | - Magdalena Witkowska
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (S.M.); (P.S.); (B.C.-O.); (K.S.)
| |
Collapse
|
10
|
Mandić D, Nežić L, Amdžić L, Vojinović N, Gajanin R, Popović M, Đeri J, Balint MT, Dumanović J, Milovanović Z, Grujić-Milanović J, Škrbić R, Jaćević V. Overexpression of MRP1/ABCC1, Survivin and BCRP/ABCC2 Predicts the Resistance of Diffuse Large B-Cell Lymphoma to R-CHOP Treatment. Cancers (Basel) 2023; 15:4106. [PMID: 37627134 PMCID: PMC10452886 DOI: 10.3390/cancers15164106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Approximately 40% of patients with diffuse large B-cell lymphoma (DLBCL) experience treatment resistance to the first-line R-CHOP regimen. ATP binding cassette (ABC) transporters and survivin might play a role in multidrug resistance (MDR) in various tumors. The aim was to investigate if the coexpression of ABC transporters and survivin was associated with R-CHOP treatment response. METHODS The expression of Bcl-2, survivin, P-glycoprotein/ABCB1, MRP1/ABCC1, and BCRP/ABCC2 was analyzed using immunohistochemistry in tumor specimens obtained from patients with DLBCL, and classified according to the treatment response as Remission, Relapsed, and (primary) Refractory groups. All patients received R-CHOP or equivalent treatment. RESULTS Bcl-2 was in strong positive correlation with clinical parameters and all biomarkers except P-gp/ABCB1. The overexpression of MRP1/ABCC1, survivin, and BCRP/ABCC2 presented as high immunoreactive scores (IRSs) was detected in the Refractory and Relapsed groups (p < 0.05 vs. Remission), respectively, whereas the IRS of P-gp/ABCB1 was low. Significant correlations were found among either MRP1/ABCC1 and survivin or BCRP/ABCC2 in the Refractory and Relapsed groups, respectively. In multiple linear regression analysis, ECOG status along with MRP1/ABCC1 or survivin and BRCP/ABCG2 was significantly associated with the prediction of the R-CHOP treatment response. CONCLUSIONS DLBCL might harbor certain molecular signatures such as MRP1/ABCC1, survivin, and BCRP/ABCC2 overexpression that can predict resistance to R-CHOP.
Collapse
Affiliation(s)
- Danijela Mandić
- Department of Hematology, Clinic of Internal Medicine, University Clinical Center Republic of Srpska, 12 Beba, 78000 Banja Luka, Bosnia and Herzegovina;
- Department of Internal Medicine, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.N.); (R.Š.)
| | - Ljiljana Amdžić
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.)
| | - Nataša Vojinović
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.)
| | - Radoslav Gajanin
- Department of Pathology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Miroslav Popović
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Jugoslav Đeri
- Department of Surgery, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Milena Todorović Balint
- Department of Hematology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Clinic of Hematology, University Clinical Center of Serbia, 2 Pasterova, 11000 Belgrade, Serbia
| | - Jelena Dumanović
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studenski trg 16, 11000 Belgrade, Serbia;
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Zoran Milovanović
- Special Police Unit, Ministry of Interior, Trebevićka 12/A, 11030 Belgrade, Serbia;
| | - Jelica Grujić-Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, University of Belgrade, Dr. Subotića 4, 11000 Belgrade, Serbia;
| | - Ranko Škrbić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.N.); (R.Š.)
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.)
| | - Vesna Jaćević
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Basirat U, Bin Tariq U, Moeen N, Jawhar ZH, Shoja SJ, Kareem AK, Ramírez-Coronel AA, Romero-Parra RM, Zabibah RS, Gupta J, Mustafa YF, Farhood B. A Systematic Review of the Chemo/Radioprotective Effects of Melatonin against Ototoxic Adverse Effects Induced by Chemotherapy and Radiotherapy. Curr Pharm Des 2023; 29:1218-1229. [PMID: 37138418 DOI: 10.2174/1381612829666230503145707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Although chemotherapy and radiotherapy are effective in cancer treatment, different adverse effects induced by these therapeutic modalities (such as ototoxicity) restrict their clinical use. Co-treatment of melatonin may alleviate the chemotherapy/radiotherapy-induced ototoxicity. OBJECTIVE In the present study, the otoprotective potentials of melatonin against the ototoxicity induced by chemotherapy and radiotherapy were reviewed. METHODS According to the PRISMA guideline, a systematic search was carried out to identify all relevant studies on "the role of melatonin against ototoxic damage associated with chemotherapy and radiotherapy" in the different electronic databases up to September 2022. Sixty-seven articles were screened based on a predefined set of inclusion and exclusion criteria. Seven eligible studies were finally included in this review. RESULTS The in vitro findings showed that cisplatin chemotherapy significantly decreased the auditory cell viability compared to the control group; in contrast, the melatonin co-administration increased the cell viability of cisplatin-treated cells. The results obtained from the distortion product otoacoustic emission (DPOAE) and auditory brainstem response (ABR) tests demonstrated a decreased amplitude of DPOAE and increased values of ABR I-IV interval and ABR threshold in mice/rats receiving radiotherapy and cisplatin; nevertheless, melatonin co-treatment indicated an opposite pattern on these evaluated parameters. It was also found that cisplatin and radiotherapy could significantly induce the histological and biochemical changes in the auditory cells/tissue. However, melatonin co-treatment resulted in alleviating the cisplatin/radiotherapy-induced biochemical and histological changes. CONCLUSION According to the findings, it was shown that melatonin co-treatment alleviates the ototoxic damage induced by chemotherapy and radiotherapy. Mechanically, melatonin may exert its otoprotective effects via its anti-oxidant, anti-apoptotic, and anti-inflammatory activities and other mechanisms.
Collapse
Affiliation(s)
| | | | - Nawal Moeen
- Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Sarah Jawad Shoja
- College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Hamed AR, Yahya SMM, Nabih HK. Anti-drug resistance, anti-inflammation, and anti-proliferation activities mediated by melatonin in doxorubicin-resistant hepatocellular carcinoma: in vitro investigations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1117-1128. [PMID: 36651944 DOI: 10.1007/s00210-023-02385-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the major life-threatening primary liver malignancy in both sexes all over the world. Unfortunately, the majority of patients are diagnosed at later stages because HCC does not elicit obvious symptoms during its early incidence. Consequently, most individuals escape the first-line HCC treatments and are treated with chemotherapy. Regrettably, the therapeutic outcomes for those patients are usually poor because of the development of multidrug resistance phenomena. Furthermore, most anti-HCC therapies cause severe undesired side effects that notably interfere with the life quality of such patients. Accordingly, there is an important need to search for an alternative therapeutic drug or adjuvant which is more efficient with safe or even minimal side effects for HCC treatment. Melatonin was recently reported to exert intrinsic antitumor activity in different cancers. However, the regulatory pathways underlying the antitumor activity of melatonin are poorly understood in resistant liver cells. Furthermore, a limited number of studies have addressed the therapeutic role of melatonin in HCC cells resistant to doxorubicin chemotherapy. In this study, we investigated the antitumor effects of melatonin in doxorubicin-resistant HepG2 cells and explored the regulatory pivotal targets underlying these effects. To achieve our aim, an MTT assay was used to calculate the 50% inhibitory concentration of melatonin and evaluate its antiproliferative effect on resistant cells. Additionally, qRT-PCR was used to quantify genes having a role in drug resistance phenotype (ABCB1, ABCC1, ABCC2, ABCC3, ABCC4, ABCC5, and ABCG2); apoptosis (caspases-3, and -7, Bcl2, Bax, and p53); anti-oxidation (NRF2); expression of melatonin receptors (MT1, MT2, and MT3); besides, programmed death receptor PD-1 gene. The active form of the caspase-3 enzyme was estimated by ELISA. A human inflammatory antibody membrane array was employed to quantify forty inflammatory factors expressed in treated cells. We observed that melatonin inhibited the proliferation of doxorubicin-resistant HepG2 cells in a dose-dependent manner after 24-h incubation time with a calculated IC50 greater than 10 mM (13.4 mM), the expression levels of genes involved in drug resistance response (ABCB1, ABCC1, ABCC5, and ABCG2) were downregulated. Also, the expression of caspase-3, Caspase-7, NRF2, and p53 genes were expressed at higher levels as compared to control (DMSO-treated cells). An active form of caspase-3 was confirmed by ELISA. Moreover, the anti-inflammatory effect of melatonin was detected through the calculated fold change to control which was reduced for various mediators that have a role in the inflammation pathway. The current findings introduce melatonin as a promising anti-cancer treatment for human-resistant HCC which could be used in combination with current chemotherapeutic regimens to improve the outcome and reduce the developed multidrug resistance.
Collapse
Affiliation(s)
- Ahmed R Hamed
- Chemistry of Medicinal Plants Department, and Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St, Dokki, Giza, 12622, Egypt
| | - Shaymaa M M Yahya
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Bohouth St, Dokki, Giza, 12622, Egypt
| | - Heba K Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El-Bohouth St, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
13
|
Moradian F, Pourhanifeh MH, Mehrzadi S, Karimi‐Behnagh A, Hosseinzadeh A. Therapeutic potentials of melatonin in the treatment of lymphoma: A review of current evidence. Fundam Clin Pharmacol 2022; 36:777-789. [DOI: 10.1111/fcp.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/03/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Farid Moradian
- Departement of General Surgery Alborz University of Medical Science Alborz Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences Kashan University of Medical Sciences Kashan Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center Iran University of Medical Sciences Tehran Iran
| | | | - Azam Hosseinzadeh
- Razi Drug Research Center Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
14
|
Adella CA, Siregar MFG, Putra IB, Hasibuan PA, Andrijono A, Bachtiar A, Lumbanraja SN, Nasution IP. The Effect of Melatonin and Cisplatin Combination Using Copper-Transporting ATPase-1, P-Glycoprotein, and Gamma-Glutamylcysteinylglycine on Ovarian Cancer Biological Cell SKOV3. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Background: Ovarian cancer is fifth most common female cancer and third most common cancer in Indonesia, but most are advanced stage patients that experiencing recurrence, which indicates resistance to treatment especially to cisplatin. Melatonin appears as an alternative that can support apoptotic effect of cisplatin as a chemotherapy regimen.
Aim: To determine effect of combination melatonin and cisplatin compared with cisplatin only chemotherapy on chemotherapy resistance with Copper Transporting ATPase-1 (CTR-1), P-glycoprotein (P-Gp), and Gamma-Glutamylcysteinylglycine (GSH) biomarkers in ovarian cancer biological cells SKOV3
Methods: This research design was experimental laboratory, post-test only control group design, using SKOV3 cell culture. This study was performed in the SCTE IMERI FKUI laboratory and Integrated Laboratory FKUI. MTS assay was used to calculate IC50 of each materials. The materials used were melatonin (concentration was 25,50,100,200,300 nM), cisplatin (concentration was 0.1, 0.5, 1, 2, 5 mM), and doxorubicin (concentration 10,20,40,50,80,100,200 µM). IC50 melatonin was 1,841 mM, IC50 cisplatin was 117,5 µM, and IC50 doxorubicin was 14,72 µM. Samples were control negative group, IC50 doxorubicin as a control positive, IC50 cisplatin, IC50 melatonin, combination group of melatonin and cisplatin were 1xIC50, ¾xIC50, ½xIC50, and ¼xIC50. ANOVA and Bonferroni test were used for statistical test.
Results: Based on data processing, IC50 of melatonin was 1,841 mM, IC50 of doxorubicin was 14,72 mM, while IC50 of cisplatin was 117.5 μM. The mean expression of CTR-1 in IC50 melatonin group was 15.77 ± 0.21 and in IC50 cisplatin group was 10.87 ± 0.91, mean expression in IC50 doxorubicin group was 30,33 ± 0,4. Meanwhile, mean expression of CTR-1 in IC50 cisplatin was 7,37±0,7, and in combination 1 group (1xIC50 melatonin and 1xIC50 cisplatin) was 19,73±1.0,49. For P glycoprotein, mean expression in IC50 cisplatin was 16±1,59, in IC50 melatonin group was 7,37±0,21, in IC50 doxorubicin was 0, and in combination 1 group (1xIC50 melatonin and 1xIC50 cisplatin) was 6,7±0,17. Last, in GSH, mean expression in IC50 cisplatin group was 33,2±0,87, in IC50 melatonin group was 12,57±0,12, in IC50 doxorubicin group was 1,33±0,66, and in combination 1 group (1xIC50 melatonin and 1xIC50 cisplatin) was 11,73±0,67. There was significant difference of CTR-1 expression in combination 1 group which was higher (19.73%), p-glycoprotein expression in combination 1 group which was lower (6,7%), and also GSH expression in combination 1 group was lower (11,73%) compared to other groups.
Conclusion: The group 1 combination of 1xIC50 melatonin and 1x IC50 cislatin with 1.841 mM and cisplatin 117.5 uM were able to reduce cisplatin chemotherapy resistance by increasing drug influx activity by increasing CTR-1 expression, decreasing drug efflux through decreasing p-glycoprotein expression, and decreased DNA repair activity through decreased GSH expression.
Collapse
|
15
|
Multidrug Resistance (MDR): A Widespread Phenomenon in Pharmacological Therapies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030616. [PMID: 35163878 PMCID: PMC8839222 DOI: 10.3390/molecules27030616] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Multidrug resistance is a leading concern in public health. It describes a complex phenotype whose predominant feature is resistance to a wide range of structurally unrelated cytotoxic compounds, many of which are anticancer agents. Multidrug resistance may be also related to antimicrobial drugs, and is known to be one of the most serious global public health threats of this century. Indeed, this phenomenon has increased both mortality and morbidity as a consequence of treatment failures and its incidence in healthcare costs. The large amounts of antibiotics used in human therapies, as well as for farm animals and even for fishes in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. It is not negligible that the ongoing COVID-19 pandemic may further contribute to antimicrobial resistance. In this paper, multidrug resistance and antimicrobial resistance are underlined, focusing on the therapeutic options to overcome these obstacles in drug treatments. Lastly, some recent studies on nanodrug delivery systems have been reviewed since they may represent a significant approach for overcoming resistance.
Collapse
|
16
|
Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett 2021; 509:63-80. [PMID: 33838282 DOI: 10.1016/j.canlet.2021.03.025] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The nuclear factor-kappaB (NF-κB) signaling pathway is considered as a potential therapeutic target in cancer therapy. It has been well established that transcription factor NF-κB is involved in regulating physiological and pathological events including inflammation, immune response and differentiation. Increasing evidences suggest that deregulated NF-κB signaling can enhance cancer cell proliferation, metastasis and also mediate radio-as well as chemo-resistance. On the contrary, non-coding RNAs (ncRNAs) have been found to modulate NF-κB signaling pathway under different settings. MicroRNAs (miRNAs) can dually inhibit/induce NF-κB signaling thereby affecting the growth and migration of cancer cells. Furthermore, the response of cancer cells to radiotherapy and chemotherapy may also be regulated by miRNAs. Regulation of NF-κB by miRNAs may be mediated via binding to 3/-UTR region. Interestingly, anti-tumor compounds can increase the expression of tumor-suppressor miRNAs in inhibiting NF-κB activation and the progression of cancers. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can also effectively modulate NF-κB signaling thus affecting tumorigenesis. It is noteworthy that several studies have demonstrated that lncRNAs and circRNAs can affect miRNAs in targeting NF-κB activation. They can act as competing endogenous RNA (ceRNA) thereby reducing miRNA expression to induce NF-κB activation that can in turn promote cancer progression and malignancy.
Collapse
|
17
|
Feng P, Li H, Pei J, Huang Y, Li G. Identification of a 14-Gene Prognostic Signature for Diffuse Large B Cell Lymphoma (DLBCL). Front Genet 2021; 12:625414. [PMID: 33643388 PMCID: PMC7902938 DOI: 10.3389/fgene.2021.625414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/21/2021] [Indexed: 01/20/2023] Open
Abstract
Although immunotherapy is a potential strategy to resist cancers, due to the inadequate acknowledge, this treatment is not always effective for diffuse large B cell lymphoma (DLBCL) patients. Based on the current situation, it is critical to systematically investigate the immune pattern. According to the result of univariate and multivariate cox proportional hazards, LASSO regression and Kaplan-Meier survival analysis on immune-related genes (IRGs), a prognostic signature, containing 14 IRGs (AQP9, LMBR1L, FGF20, TANK, CRP, ORM1, JAK1, BACH2, MTCP1, IFITM1, TNFSF10, FGF12, RFX5, and LAP3), was built. This model was validated by external data, and performed well. DLBCL patients were divided into low- and high-risk groups, according to risk scores from risk formula. The results of CIBERSORT showed that different immune status and infiltration pattern were observed in these two groups. Gene set enrichment analysis (GSEA) indicated 12 signaling pathways were significantly enriched in the high-risk group, such as natural killer cell-mediated cytotoxicity, toll-like receptor signaling pathway, and so on. In summary, 14 clinically significant IRGs were screened to build a risk score formula. This formula was an accurate tool to provide a certain basis for the treatment of DLBCL patients.
Collapse
Affiliation(s)
- Pengcheng Feng
- Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Hongxia Li
- Affiliated Hospital of Changzhi Institute of Traditional Chinese Medicine, Changzhi, China
| | - Jinhong Pei
- Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Yan Huang
- Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Guixia Li
- Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| |
Collapse
|