1
|
Rahadiani N, Stephanie M, Manatar AF, Krisnuhoni E. The Diagnostic Utility of cfDNA and ctDNA in Liquid Biopsies for Gastrointestinal Cancers over the Last Decade. Oncol Res Treat 2024; 48:125-141. [PMID: 39681095 DOI: 10.1159/000543030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is a fragmented DNA that is released into the blood through necrosis, apoptosis, phagocytosis, or active secretion. cfDNA includes a subclass called circulating tumor DNA (ctDNA) released from cancer cells and constitutes a varied proportion of the total cfDNA. Both cfDNA and ctDNA hold significant potential as diagnostic biomarkers in gastrointestinal cancers. SUMMARY cfDNA and ctDNA are promising diagnostic biomarkers for gastrointestinal cancers with varied diagnostic values in different types of cancers. cfDNA offers higher sensitivity that makes it more suitable for screening methods and constant monitoring, particularly in integration with conventional biomarkers or in a multimarker model. On the contrary, ctDNA gives a real-time picture of tumor genetics and is more suitable for definitive diagnosis due to its specificity for tumor-associated alterations. Different types of samples and methods of detection can influence sensitivity, and the amount of cfDNA is higher in serum but plasma is used for cfDNA analysis because it contains less cellular contamination. In summary, cfDNA is more sensitive than ctDNA, although they have comparable or slightly lower specificity. KEY MESSAGE Further studies are needed to create common guidelines, minimize the cost of analysis, and perform extensive clinical trials to demonstrate the utility of circulating cfDNA and ctDNA in the vast majority of gastrointestinal cancer stages. Therefore, with the advancement in these technologies, cfDNA and ctDNA will be highly beneficial and evolve cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Nur Rahadiani
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Marini Stephanie
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Amelia Fossetta Manatar
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ening Krisnuhoni
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
2
|
Park SH, Lee HJ, Kim TI, Lee J, Han SY, Seo HI, Kim DU. Ultrashort Cell-Free DNA Fragments and Vimentin-Positive Circulating Tumor Cells for Predicting Early Recurrence in Patients with Biliary Tract Cancer. Diagnostics (Basel) 2024; 14:2462. [PMID: 39518429 PMCID: PMC11544859 DOI: 10.3390/diagnostics14212462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Biliary tract cancer (BTC) is a rare but aggressive malignancy that requires surgical treatment. However, postoperative recurrence rates are high, and reliable predictors of recurrence are limited. This study aimed to investigate the effectiveness of cell-free DNA (cfDNA) and circulating tumor cells (CTCs) in predicting early recurrence after curative surgery and complete adjuvant therapy in patients with BTC. Methods: Twenty-four patients who underwent R0 and R1 resections and completed adjuvant therapy for BTC between September 2019 and March 2022 were followed up until March 2024. Patients were categorized into early recurrence (ER) and non-ER groups, using one year as the cutoff for recurrence. Results: The combination score derived from ultrashort fragments of cfDNA, vimentin-positive CTCs, and carbohydrate antigen (CA) 19-9 levels showed a statistically significant difference between the ER and non-ER groups (p-value < 0.001). The receiver operating characteristic curve from the combination score and CA 19-9 levels yielded areas under the curve of 0.891 and 0.750, respectively. Conclusions: Although further research is required, these findings suggest that cfDNA and CTCs may increase the accuracy of predicting postoperative recurrence in patients with BTC.
Collapse
Affiliation(s)
- Sung Hee Park
- Division of Gastroenterology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.H.P.); (H.J.L.); (J.L.)
| | - Hye Ji Lee
- Division of Gastroenterology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.H.P.); (H.J.L.); (J.L.)
| | - Tae In Kim
- Division of Gastroenterology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.H.P.); (H.J.L.); (J.L.)
| | - Jonghyun Lee
- Division of Gastroenterology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.H.P.); (H.J.L.); (J.L.)
| | - Sung Yong Han
- Division of Gastroenterology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea; (S.H.P.); (H.J.L.); (J.L.)
- Department of Internal Medicine, Pusan National University College of Medicine, Yangsan 44955, Republic of Korea
| | - Hyung Il Seo
- Department of Surgery, Pusan National University College of Medicine, Yangsan 44955, Republic of Korea;
| | - Dong Uk Kim
- Department of Internal Medicine, Gumi Medical Center, CHA University, Gumi 39100, Republic of Korea;
| |
Collapse
|
3
|
Qian ST, Xie FF, Zhao HY, Liu QS, Cai DL. Prospects in the application of ultrasensitive chromosomal aneuploidy detection in precancerous lesions of gastric cancer. World J Gastrointest Surg 2024; 16:6-12. [PMID: 38328310 PMCID: PMC10845279 DOI: 10.4240/wjgs.v16.i1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignant tumor within the digestive system, with over 40% of new cases and deaths related to GC globally occurring in China. Despite advancements in treatment modalities, such as surgery supplemented by adjuvant radiotherapy or chemotherapeutic agents, the prognosis for GC remains poor. New targeted therapies and immunotherapies are currently under investigation, but no significant breakthroughs have been achieved. Studies have indicated that GC is a heterogeneous disease, encompassing multiple subtypes with distinct biological characteristics and roles. Consequently, personalized treatment based on clinical features, pathologic typing, and molecular typing is crucial for the diagnosis and management of precancerous lesions of gastric cancer (PLGC). Current research has categorized GC into four subtypes: Epstein-Barr virus-positive, microsatellite instability, genome stability, and chromosome instability (CIN). Technologies such as multi-omics analysis and gene sequencing are being employed to identify more suitable novel testing methods in these areas. Among these, ultrasensitive chromosomal aneuploidy detection (UCAD) can detect CIN at a genome-wide level in subjects using low-depth whole genome sequencing technology, in conjunction with bioinformatics analysis, to achieve qualitative and quantitative detection of chromosomal stability. This editorial reviews recent research advancements in UCAD technology for the diagnosis and management of PLGC.
Collapse
Affiliation(s)
- Su-Ting Qian
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Fei-Fei Xie
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Hao-Yu Zhao
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Qing-Sheng Liu
- Science and Education Section, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang Province, China
| | - Dan-Li Cai
- Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 311122, Zhejiang Province, China
| |
Collapse
|
4
|
Qin JJ, Xue F, Shen ZL, Chen XZ. Low-coverage and cost-effective whole-genome sequencing assay for glioma risk stratification. J Cancer Res Clin Oncol 2023; 149:8359-8367. [PMID: 37079053 DOI: 10.1007/s00432-023-04716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE To investigate chromosomal instability (CIN) as a biomarker for glioma risk stratifications, with cost-effective, low-coverage whole-genome sequencing assay (WGS). METHODS Thirty-five formalin-fixed paraffin-embedded glioma samples were collected from Huashan Hospital. DNA was sent for WGS by Illumina X10 at low (median) genome coverage of 1.86x (range: 1.03-3.17×), followed by copy number analyses, using a customized bioinformatics workflow-Ultrasensitive Copy number Aberration Detector. RESULTS Among the 35 glioma patients, 12 were grade IV, 10 grade III, 11 grade II, and 2 Grade I cases, with high chromosomal instability (CIN +) in 24 (68.6%) of the glioma patients. The other 11 (31.4%) had lower chromosomal instability (CIN-). CIN significantly correlates with overall survival (P = 0.00029). Patients with CIN + /7p11.2 + (12 grade IV and 3 grade III) had the worst survival ratio (hazard ratio:16.2, 95% CI:6.3-41.6) with a median overall survival of 24 months. Ten (66.7%) patients died during the first two follow-up years. In the CIN + patients without 7p11.2 + (6 grade III, 3 grade II), 3 (33.3%) patients died during follow-up, and the estimated overall survival was around 65 months. No deaths were reported in the 11 CIN- patients (2 grade I, 8 grade II, 1 grade III) during the 80-month follow-up period. In this study, chromosomal instability served as a prognosis factor for gliomas independent of tumor grades. CONCLUSION It is feasible to use cost-effective, low-coverage WGS for risk stratification of glioma. Elevated chromosomal instability is associated with poor prognosis.
Collapse
Affiliation(s)
- Jia-Jun Qin
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 of Yanchang Road, Jingan District, Shanghai, 200072, China
- Department of Neurosurgery, Chongming Branch of Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 202157, China
| | - Fei Xue
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 of Yanchang Road, Jingan District, Shanghai, 200072, China
| | - Zhao-Li Shen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 of Yanchang Road, Jingan District, Shanghai, 200072, China.
| | - Xian-Zhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 of Yanchang Road, Jingan District, Shanghai, 200072, China.
| |
Collapse
|
5
|
Labiano I, Huerta AE, Arrazubi V, Hernandez-Garcia I, Mata E, Gomez D, Arasanz H, Vera R, Alsina M. State of the Art: ctDNA in Upper Gastrointestinal Malignancies. Cancers (Basel) 2023; 15:1379. [PMID: 36900172 PMCID: PMC10000247 DOI: 10.3390/cancers15051379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a promising non-invasive source to characterize genetic alterations related to the tumor. Upper gastrointestinal cancers, including gastroesophageal adenocarcinoma (GEC), biliary tract cancer (BTC) and pancreatic ductal adenocarcinoma (PADC) are poor prognostic malignancies, usually diagnosed at advanced stages when no longer amenable to surgical resection and show a poor prognosis even for resected patients. In this sense, ctDNA has emerged as a promising non-invasive tool with different applications, from early diagnosis to molecular characterization and follow-up of tumor genomic evolution. In this manuscript, novel advances in the field of ctDNA analysis in upper gastrointestinal tumors are presented and discussed. Overall, ctDNA analyses can help in early diagnosis, outperforming current diagnostic approaches. Detection of ctDNA prior to surgery or active treatment is also a prognostic marker that associates with worse survival, while ctDNA detection after surgery is indicative of minimal residual disease, anticipating in some cases the imaging-based detection of progression. In the advanced setting, ctDNA analyses characterize the genetic landscape of the tumor and identify patients for targeted-therapy approaches, and studies show variable concordance levels with tissue-based genetic testing. In this line, several studies also show that ctDNA serves to follow responses to active therapy, especially in targeted approaches, where it can detect multiple resistance mechanisms. Unfortunately, current studies are still limited and observational. Future prospective multi-center and interventional studies, carefully designed to assess the value of ctDNA to help clinical decision-making, will shed light on the real applicability of ctDNA in upper gastrointestinal tumor management. This manuscript presents a review of the evidence available in this field up to date.
Collapse
Affiliation(s)
- Ibone Labiano
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Ana Elsa Huerta
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Virginia Arrazubi
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Irene Hernandez-Garcia
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Elena Mata
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - David Gomez
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Hugo Arasanz
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Ruth Vera
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Maria Alsina
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
6
|
Wang X, Liu C, Chen J, Chen L, Ren X, Hou M, Cui X, Jiang Y, Liu E, Zong Y, Duan A, Fu X, Yu W, Zhao X, Yang Z, Zhang Y, Fu J, Wang H. Single-cell dissection of remodeled inflammatory ecosystem in primary and metastatic gallbladder carcinoma. Cell Discov 2022; 8:101. [PMID: 36198671 PMCID: PMC9534837 DOI: 10.1038/s41421-022-00445-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/09/2022] [Indexed: 11/09/2022] Open
Abstract
Gallbladder carcinoma (GBC) is the most common biliary tract malignancy with the lowest survival rate, primarily arising from chronic inflammation. To better characterize the progression from inflammation to cancer to metastasis, we performed single-cell RNA sequencing across samples of 6 chronic cholecystitis, 12 treatment-naive GBCs, and 6 matched metastases. Benign epithelial cells from inflamed gallbladders displayed resting, immune-regulating, and gastrointestinal metaplastic phenotypes. A small amount of PLA2G2A+ epithelial cells with copy number variation were identified from a histologically benign sample. We validated significant overexpression of PLA2G2A across in situ GBCs, together with increased proliferation and cancer stemness in PLA2G2A-overexpressing GBC cells, indicating an important role for PLA2G2A during early carcinogenesis. Malignant epithelial cells displayed pervasive cancer hallmarks and cellular plasticity, differentiating into metaplastic, inflammatory, and mesenchymal subtypes with distinct transcriptomic, genomic, and prognostic patterns. Chronic cholecystitis led to an adapted microenvironment characterized by MDSC-like macrophages, CD8+ TRM cells, and CCL2+ immunity-regulating fibroblasts. By contrast, GBC instigated an aggressive and immunosuppressive microenvironment, featured by tumor-associated macrophages, Treg cells, CD8+ TEX cells, and STMN1+ tumor-promoting fibroblasts. Single-cell and bulk RNA-seq profiles consistently showed a more suppressive immune milieu for GBCs with inflammatory epithelial signatures, coupled with strengthened epithelial-immune crosstalk. We further pinpointed a subset of senescence-like fibroblasts (FN1+TGM2+) preferentially enriched in metastatic lesions, which promoted GBC migration and invasion via their secretory phenotype. Collectively, this study provides comprehensive insights into epithelial and microenvironmental reprogramming throughout cholecystitis-propelled carcinogenesis and metastasis, laying a new foundation for the precision therapy of GBC.
Collapse
Affiliation(s)
- Xiang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Chunliang Liu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jianan Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xianwen Ren
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China
| | - Minghui Hou
- Research Center for Organoids, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiuliang Cui
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Youhai Jiang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Erdong Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yali Zong
- School of Life Sciences, Fudan University, Shanghai, China
| | - Anqi Duan
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaohui Fu
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wenlong Yu
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaofang Zhao
- Research Center for Organoids, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhao Yang
- Second Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yongjie Zhang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
7
|
Guan Y, Wang X, Guan K, Wang D, Bi X, Xiao Z, Xiao Z, Shan X, Hu L, Ma J, Li C, Zhang Y, Shou J, Wang B, Qian Z, Xing N. Copy number variation of urine exfoliated cells by low-coverage whole genome sequencing for diagnosis of prostate adenocarcinoma: a prospective cohort study. BMC Med Genomics 2022; 15:104. [PMID: 35513884 PMCID: PMC9069213 DOI: 10.1186/s12920-022-01253-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022] Open
Abstract
Background Non-invasive, especially the urine-based diagnosis of prostate cancer (PCa) remains challenging. Although prostate cancer antigen (PSA) is widely used in prostate cancer screening, the false positives may result in unnecessary invasive procedures. PSA elevated patients are triaged to further evaluation of free/total PSA ratio (f/t PSA), to find out potential clinically significant PCa before undergoing invasive procedures. Genomic instability, especially chromosomal copy number variations (CNVs) were proved much more tumor specific. Here we performed a prospective study to evaluate the diagnostic value of CNV via urine-exfoliated cell DNA analysis in PCa. Methods We enrolled 28 PSA elevated patients (≥ 4 ng/ml), including 16 PCa, 9 benign prostate hypertrophy (BPH) and 3 prostatic intraepithelial neoplasia (PIN). Fresh initial portion urine was collected after hospital admission. Urine exfoliated cell DNA was analyzed by low coverage Whole Genome Sequencing, followed by CNV genotyping by the prostate cancer chromosomal aneuploidy detector (ProCAD). CNVs were quantified in absolute z-score (|Z|). Serum free/total PSA ratio (f/t PSA) was reported altogether. Results In patients with PCa, the most frequent CNV events were chr3q gain (n = 2), chr8q gain (n = 2), chr2q loss (n = 4), and chr18q loss (n = 3). CNVs were found in 81.2% (95% Confidence Interval (CI) 53.7–95.0%) PCa. No CNV was identified in BPH patients. A diagnosis model was established by incorporating all CNVs. At the optimal cutoff of |Z|≥ 2.50, the model reached an AUC of 0.91 (95% CI 0.83–0.99), a sensitivity of 81.2% and a specificity of 100%. The CNV approach significantly outperformed f/t PSA (AUC = 0.62, P = 0.012). Further analyses showed that the CNV positive rate was significantly correlated with tumor grade. CNVs were found in 90.9% (95% CI 57.1–99.5%) high grade tumors and 60.0% (95% CI 17.0–92.7%) low grade tumors. No statistical significance was found for patient age, BMI, disease history and family history. Conclusions Urine exfoliated cells harbor enriched CNV features in PCa patients. Urine detection of CNV might be a biomarker for PCa diagnosis, especially in terms of the clinically significant high-grade tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01253-5.
Collapse
Affiliation(s)
- Youyan Guan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaobing Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kaopeng Guan
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dong Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingang Bi
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhendong Xiao
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zejun Xiao
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingli Shan
- Cancer Hospital of Huanxing, ChaoYang District, Beijing, 100122, China
| | - Linjun Hu
- Cancer Hospital of Huanxing, ChaoYang District, Beijing, 100122, China
| | - Jianhui Ma
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Changling Li
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yong Zhang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianzhong Shou
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | | | | | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Baj J, Bryliński Ł, Woliński F, Granat M, Kostelecka K, Duda P, Flieger J, Teresiński G, Buszewicz G, Furtak-Niczyporuk M, Portincasa P. Biomarkers and Genetic Markers of Hepatocellular Carcinoma and Cholangiocarcinoma-What Do We Already Know. Cancers (Basel) 2022; 14:1493. [PMID: 35326644 PMCID: PMC8946081 DOI: 10.3390/cancers14061493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with an increasing worldwide mortality rate. Cholangiocarcinoma (CCA) is the second most common primary liver cancer. In both types of cancers, early detection is very important. Biomarkers are a relevant part of diagnosis, enabling non-invasive detection and control of cancer recurrence, as well as in the application of screening tests in high-risk groups. Furthermore, some of these biomarkers are useful in controlling therapy and treatment selection. Detection of some markers presents higher sensitivity and specificity in combination with other markers when compared with a single detection. Some gene aberrations are also prognostic markers in the two types of cancers. In the following review, we discuss the most common biomarkers and genetic markers currently being used in the diagnosis of hepatocellular carcinoma and cholangiocarcinoma.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (K.K.); (P.D.)
| | - Łukasz Bryliński
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (Ł.B.); (F.W.); (G.T.); (G.B.)
| | - Filip Woliński
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (Ł.B.); (F.W.); (G.T.); (G.B.)
| | - Michał Granat
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (K.K.); (P.D.)
| | - Katarzyna Kostelecka
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (K.K.); (P.D.)
| | - Piotr Duda
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.G.); (K.K.); (P.D.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (Ł.B.); (F.W.); (G.T.); (G.B.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (Ł.B.); (F.W.); (G.T.); (G.B.)
| | | | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|