1
|
Arora R, Mukherjee A, Arthur G, Nachtigal MW, Schweizer F. Modulating polybasic character of galactose-based glycosylated antitumor ether lipids for enhanced cytotoxic response. RSC Med Chem 2024; 16:d4md00662c. [PMID: 39464652 PMCID: PMC11499978 DOI: 10.1039/d4md00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
We describe the structure-activity relationship studies of galactose-based glycosylated antitumor ether lipids (GAELs) by installing amine groups at different positions of galactose and the glycerol backbone. Different dibasic and tribasic analogues of galacto-GAELs were synthesized and tested against a panel of human epithelial cancer cell lines. A β-anomeric triamino galactose scaffold, was the most active compound of the series and displayed CC50 in the range of 2.6 ± 0.2 μM to 6.5 ± 0.1 μM against various epithelial cancer cell lines. This compound exhibited superior activity to kill cancer cells than cisplatin. The hit GAEL compound did not induce caspase activation and therefore, the cell-killing effect does not occur due to caspase-mediated apoptosis. This observation is in line with the previously reported GAEL prototypes.
Collapse
Affiliation(s)
- Rajat Arora
- Department of Chemistry, Faculty of Science, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Ayan Mukherjee
- Department of Chemistry, Faculty of Science, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg Manitoba R3E 0J9 Canada
| | - Mark W Nachtigal
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg Manitoba R3E 0J9 Canada
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba Winnipeg Manitoba R3E 0J9 Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba Winnipeg Manitoba R3E 0V9 Canada
| | - Frank Schweizer
- Department of Chemistry, Faculty of Science, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba Winnipeg Manitoba R3E 0J9 Canada
| |
Collapse
|
2
|
Gomes MAGB, Bauduin A, Le Roux C, Fouinneteau R, Berthe W, Berchel M, Couthon H, Jaffrès PA. Synthesis of ether lipids: natural compounds and analogues. Beilstein J Org Chem 2023; 19:1299-1369. [PMID: 37701305 PMCID: PMC10494250 DOI: 10.3762/bjoc.19.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Ether lipids are compounds present in many living organisms including humans that feature an ether bond linkage at the sn-1 position of the glycerol. This class of lipids features singular structural roles and biological functions. Alkyl ether lipids and alkenyl ether lipids (also identified as plasmalogens) correspond to the two sub-classes of naturally occurring ether lipids. In 1979 the discovery of the structure of the platelet-activating factor (PAF) that belongs to the alkyl ether class of lipids increased the interest in these bioactive lipids and further promoted the synthesis of non-natural ether lipids that was initiated in the late 60's with the development of edelfosine (an anticancer drug). More recently, ohmline, a glyco glycero ether lipid that modulates selectively SK3 ion channels and reduces in vivo the occurrence of bone metastases, and other glyco glycero ether also identified as GAEL (glycosylated antitumor ether lipids) that exhibit promising anticancer properties renew the interest in this class of compounds. Indeed, ether lipid represent a new and promising class of compounds featuring the capacity to modulate selectively the activity of some membrane proteins or, for other compounds, feature antiproliferative properties via an original mechanism of action. The increasing interest in studying ether lipids for fundamental and applied researches invited to review the methodologies developed to prepare ether lipids. In this review we focus on the synthetic method used for the preparation of alkyl ether lipids either naturally occurring ether lipids (e.g., PAF) or synthetic derivatives that were developed to study their biological properties. The synthesis of neutral or charged ether lipids are reported with the aim to assemble in this review the most frequently used methodologies to prepare this specific class of compounds.
Collapse
Affiliation(s)
| | - Alicia Bauduin
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Chloé Le Roux
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Romain Fouinneteau
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Wilfried Berthe
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Mathieu Berchel
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Hélène Couthon
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Paul-Alain Jaffrès
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| |
Collapse
|
3
|
Pinchuk AN, Rampy MA, Longino MA, Durkee BY, Counsell RE, Weichert JP. Effect of Polar Head Group Modifications on the Tumor Retention of Phospholipid Ether Analogs: Role of the Quaternary Nitrogen. Pharmaceutics 2023; 15:pharmaceutics15010171. [PMID: 36678801 PMCID: PMC9865954 DOI: 10.3390/pharmaceutics15010171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
We have previously described the remarkable capacity of radioiodinated alkyl phospholipids to be sequestered and retained by a variety of tumors in vivo. We have already established the influence of certain structural parameters of iodinated alkyl phospholipids on tumor avidity, such as stereochemistry at the sn-2 carbon of alkylglycerol phosphocholines, meta-or para-position of iodine in the aromatic ring of phenylalkyl phosphocholines, and the length of the alkyl chain in alkyl phospholipids. In order to determine the additional structural requirements for tumor uptake and retention, three new radioiodinated alkylphospholipid analogs, 2-4, were synthesized as potential tumor imaging agents. Polar head groups were modified to determine structure-tumor avidity relationships. The trimethylammonio group in 1 was substituted with a hydrogen atom in 2, an ammonio group in 3 and a tertiary butyl group in 4. All analogs were separately labeled with iodine-125 or iodine-124 and administered to Walker 256 tumor-bearing rats or human PC-3 tumor-bearing SCID mice, respectively. Tumor uptake was assessed by gamma-camera scintigraphy (for [I-125]-labeled compounds) and high-resolution micro-PET scanning (for [I-124]-labeled compounds). It was found that structural modifications in the polar head group of alkyl phospholipids strongly influenced the tumor uptake and tissue distribution of these compounds in tumor-bearing animals. Phosphoethanolamine analog 3 (NM401) displayed a very slight accumulation in tumor as compared with phosphocholine analog 1 (NM346). Analogs 2 (NM400) and 4 (NM402) lacking the positively charged nitrogen atom failed to display any tumor uptake and localized primarily in the liver. This study provided important insights regarding structural requirements for tumor uptake and retention. Replacement of the quaternary nitrogen in the alkyl phospholipid head group with non-polar substituents resulted in loss of tumor avidity.
Collapse
Affiliation(s)
- Anatoly N. Pinchuk
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR, Madison, WI 53705, USA
- Correspondence:
| | - Mark A. Rampy
- Department of Pharmacology, The University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Marc A. Longino
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR, Madison, WI 53705, USA
| | - Ben Y. Durkee
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR, Madison, WI 53705, USA
| | - Raymond E. Counsell
- Department of Pharmacology, The University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jamey P. Weichert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave., WIMR, Madison, WI 53705, USA
| |
Collapse
|
4
|
Preparation of Water-Soluble Acetylaminoglucan with Low Molecular Weight and Its Anti-Tumor Activity on H22 Tumor-Bearing Mice. Molecules 2022; 27:molecules27217273. [DOI: 10.3390/molecules27217273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a novel low molecular weight of acetylaminoglucan (AGA) was obtained and its antitumor activity on H22 tumor-bearing mice was investigated. The results of UV, HPLC and FT-IR showed that AGA present high purity with low molecular weight of 2.76 × 103 Da. Animal experiments showed that AGA could inhibit the proliferation of tumor cells in H22 tumor-bearing mice by protecting the immune organs, enhancing the phagocytosis ability of macrophages, killing activity of NK cells and proliferation capacity of lymphocytes, improving the levels of cytokines in vivo and regulating the distribution of lymphocyte subsets, and the tumor inhibition rate reached to 52.74% (50 mg/kg). Cell cycle determination further indicated that AGA could induce apoptosis of tumor cells and arrests it in S phase. These results will provide a data basis for the potential application of AGA in pharmaceutical industry.
Collapse
|
5
|
The Potential of Novel Lipid Agents for the Treatment of Chemotherapy-Resistant Human Epithelial Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14143318. [PMID: 35884379 PMCID: PMC9322924 DOI: 10.3390/cancers14143318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Disease recurrence and chemotherapy resistance are the major causes of mortality for the majority of epithelial ovarian cancer (EOC) patients. Standard of care relies on cytotoxic drugs that induce a form of cell death called apoptosis. EOC cells can evolve to resist apoptosis. We developed drugs called glycosylated antitumor ether lipids (GAELs) that kill EOC cells by a mechanism that does not involve apoptosis. GAELs most likely induce cell death through a process called methuosis. Importantly, we showed that GAELs are effective at killing chemotherapy-resistant EOC cells in vitro and in vivo. Our work shows that the EOC community should begin to investigate methuosis-inducing agents as a novel therapeutic platform to treat chemotherapy-resistant EOC. Abstract Recurrent epithelial ovarian cancer (EOC) coincident with chemotherapy resistance remains the main contributor to patient mortality. There is an ongoing investigation to enhance patient progression-free and overall survival with novel chemotherapeutic delivery, such as the utilization of antiangiogenic medications, PARP inhibitors, or immune modulators. Our preclinical studies highlight a novel tool to combat chemotherapy-resistant human EOC. Glycosylated antitumor ether lipids (GAELs) are synthetic glycerolipids capable of killing established human epithelial cell lines from a wide variety of human cancers, including EOC cell lines representative of different EOC histotypes. Importantly, GAELs kill high-grade serous ovarian cancer (HGSOC) cells isolated from the ascites of chemotherapy-sensitive and chemotherapy-resistant patients grown as monolayers of spheroid cultures. In addition, GAELs were well tolerated by experimental animals (mice) and were capable of reducing tumor burden and blocking ascites formation in an OVCAR-3 xenograft model. Overall, GAELs show great promise as adjuvant therapy for EOC patients with or without chemotherapy resistance.
Collapse
|