1
|
Rivera-Serrano M, Flores-Colón M, Valiyeva F, Meléndez LM, Vivas-Mejía PE. Upregulation of MMP3 Promotes Cisplatin Resistance in Ovarian Cancer. Int J Mol Sci 2025; 26:4012. [PMID: 40362252 PMCID: PMC12071843 DOI: 10.3390/ijms26094012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/02/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Most women with ovarian cancer (OC) develop resistance to platinum chemotherapy, posing a significant challenge to treatment. Matrix metalloproteinase 3 (MMP3) is overexpressed in High-Grade Serous Ovarian Cancer (HGSOC) and is associated with poor survival outcomes; however, its role in platinum resistance remains underexplored. We evaluated the baseline and cisplatin-induced MMP3 transcript and protein levels in cisplatin-resistant OC cells, revealing significantly higher MMP3 levels in cisplatin-resistant cells than in cisplatin-sensitive cells. siRNA-mediated MMP3 knockdown in cisplatin-resistant OC cells significantly reduced viability, proliferation, and invasion, and these effects were further enhanced when combined with cisplatin treatment, indicating a possible synergistic impact on reducing cancer cell aggressiveness; however, chemical MMP3 inhibition did not replicate these effects. RNA sequencing of MMP3-siRNA-treated cisplatin-resistant HGSOC cells revealed 415 differentially expressed genes (DEGs) compared to the negative control, with an additional 440 DEGs identified in MMP3-siRNA HGSOC cells treated in combination with cisplatin. These DEGs were enriched in pathways related to cell cycle regulation, apoptosis, metabolism, stress response, and extracellular matrix organization. Co-immunoprecipitation-coupled mass spectroscopy (IP-MS) identified MMP3-interacting proteins that may contribute to cell survival and chemoresistance in cisplatin-resistant OC. While MMP3-siRNA monotherapy did not reduce tumor growth in vivo, its combination with cisplatin significantly inhibited tumor growth in a cisplatin-resistant HGSOC xenograft model. These findings underscore the multifaceted role of MMP3 in cisplatin resistance, suggesting its involvement in critical cellular processes driving chemoresistance and highlighting the challenges associated with direct MMP3 targeting in therapeutic strategies.
Collapse
Affiliation(s)
- Mariela Rivera-Serrano
- Department of Biology, University of Puerto Rico-Rio Piedras Campus, San Juan 00925, Puerto Rico;
- Department of Biochemistry, University of Puerto Rico—Medical Sciences Campus, San Juan 00936, Puerto Rico;
- Comprehensive Cancer Center, University of Puerto Rico, San Juan 00936, Puerto Rico;
| | - Marienid Flores-Colón
- Department of Biochemistry, University of Puerto Rico—Medical Sciences Campus, San Juan 00936, Puerto Rico;
- Comprehensive Cancer Center, University of Puerto Rico, San Juan 00936, Puerto Rico;
| | - Fatima Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, San Juan 00936, Puerto Rico;
| | - Loyda M. Meléndez
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico—Medical Sciences Campus, San Juan 00936, Puerto Rico;
- Department of Microbiology and Medical Zoology, University of Puerto Rico—Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Pablo E. Vivas-Mejía
- Department of Biochemistry, University of Puerto Rico—Medical Sciences Campus, San Juan 00936, Puerto Rico;
- Comprehensive Cancer Center, University of Puerto Rico, San Juan 00936, Puerto Rico;
| |
Collapse
|
2
|
Moaddel R, Candia J, Ubaida-Mohien C, Tanaka T, Moore AZ, Zhu M, Fantoni G, Church S, D'Agostino J, Fan J, Shehadeh N, De S, Lehrmann E, Kaileh M, Simonsick E, Sen R, Egan JM, Ferrucci L. Healthy Aging Metabolomic and Proteomic Signatures Across Multiple Physiological Compartments. Aging Cell 2025:e70014. [PMID: 39952253 DOI: 10.1111/acel.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
The study of biomarkers in biofluids and tissues expanded our understanding of the biological processes that drive physiological and functional manifestations of aging. However, most of these studies were limited to examining one biological compartment, an approach that fails to recognize that aging pervasively affects the whole body. The simultaneous modeling of hundreds of metabolites and proteins across multiple compartments may provide a more detailed picture of healthy aging and point to differences between chronological and biological aging. Herein, we report proteomic analyses of plasma and urine collected in healthy men and women, age 22-92 years. Using these data, we developed a series of metabolomic and proteomic predictors of chronological age for plasma, urine, and skeletal muscle. We then defined a biological aging score, which measures the departure between an individual's predicted age and the expected predicted age for that individual based on the full cohort. We show that these predictors are significantly and independently related to clinical phenotypes important for aging, such as inflammation, iron deficiency anemia, muscle mass, and renal and hepatic functions. Despite a different set of selected biomarkers in each compartment, the different scores reflect a similar degree of deviation from healthy aging in single individuals, thus allowing identification of subjects with significant accelerated or decelerated biological aging.
Collapse
Affiliation(s)
- R Moaddel
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J Candia
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - C Ubaida-Mohien
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - T Tanaka
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - A Z Moore
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - M Zhu
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - G Fantoni
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - S Church
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J D'Agostino
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J Fan
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - N Shehadeh
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - S De
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - E Lehrmann
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - M Kaileh
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - E Simonsick
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - R Sen
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J M Egan
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - L Ferrucci
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Ayubi E, Farashi S, Tapak L, Afshar S. Development and validation of a biomarker-based prediction model for metastasis in patients with colorectal cancer: Application of machine learning algorithms. Heliyon 2025; 11:e41443. [PMID: 39839508 PMCID: PMC11748706 DOI: 10.1016/j.heliyon.2024.e41443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 01/23/2025] Open
Abstract
Objective The purpose of the current study was to develop and validate a biomarker-based prediction model for metastasis in patients with colorectal cancer (CRC). Methods Two datasets, GSE68468 and GSE41568, were retrieved from the Gene Expression Omnibus (GEO) database. In the GSE68468 dataset, key biomarkers were identified through a screening process involving differential expression analysis, redundancy analysis, and recursive feature elimination technique. Subsequently, the prediction model was developed and internally validated using five machine learning (ML) algorithms including lasso and elastic-net regularized generalized linear model (glmnet), k-nearest neighbors (kNN), support vector machine (SVM) with Radial Basis Function Kernel, random forest (RF), and eXtreme Gradient Boosting (XGBoost). The predictive performance of the algorithm with the highest accuracy was then externally validated on the GSE41568 dataset. Results Among 22,283 registered genes in the GSE68468 dataset, the screening process identified 16 key genes including MMP3, CCDC102B, CDH2, SCGB1A1, KRT7, CYP1B1, LAMC3, ALB, DIXDC1, VWF, MMP1, CYP4B1, NKX3-2, TMEM158, GADD45B, SERPINA1 and these genes were used to build the prediction model. On the internal validation dataset, the prediction performance of five ML algorithms was as follows; RF (accuracy = 0.97 and kappa = 0.91), XGBoost (0.93, 0.81), kNN (0.93, 0.81), glmnet (0.93, 0.82) and SVM (0.92, 0.80). Top five biomarkers were MMP3, CCDC102B, CDH2, VWF and MMP1. The RF model exhibited an accuracy of 0.97, a kappa value of 0.92, and an area under the curve (AUC) of 0.99 in the external validation dataset. Conclusion The results of this study have identified biomarkers through ML algorithms which help to identify patients with CRC prone to metastasis.
Collapse
Affiliation(s)
- Erfan Ayubi
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajjad Farashi
- Neurophysiology Research Center, Institute of Neuroscience and Mental Health, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Tapak
- Modeling of Noncommunicable Diseases Research Center, Institute of Health Sciences andTechnologies, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Pfeifer CS, Lucena FS, Logan MG, Nair D, Lewis SH. Current approaches to produce durable biomaterials: Trends in polymeric materials for restorative dentistry applications. Dent Mater 2024; 40:2122-2134. [PMID: 39424526 PMCID: PMC11637916 DOI: 10.1016/j.dental.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Dental caries continues to be a public health issue, especially more evident in underserved populations throughout the U.S. Unfortunately, especially with an aging population, hundreds of thousands of resin composite restorations are replaced each year due to recurring decay and fracture. According to several cohort studies, the average life span of this type of restoration is 10 years or less, depending on the caries risk level of the patient and the complexity of the restorative procedure. Any new material development must depart from the simple restoration of form paradigm, in which the filling is simply inert/biocompatible. This review will discuss novel antibiofilm structures, based on a targeted approach specifically against dysbiotic bacteria. Biofilm coalescence can be prevented by using glycosyl transferase - GTF inhibitors, in a non-bactericidal approach. On the tooth substrate side, MMP-inhibiting molecules can improve the stability of the collagen in the hybrid layer. This review will also discuss the importance of testing the materials in a physiologically relevant environment, mimicking the conditions in the mouth in terms of mechanical loading, bacterial challenge, and the presence of saliva. Ultimately, the goal of materials development is to achieve durable restorations, capable of adapting to the oral environment and resisting challenges that go beyond mechanical demands. That way, we can prevent the unnecessary loss of additional tooth structure that comes with every re-treatment. CLINICAL SIGNIFICANCE: While proper restorative technique and patient education in terms of diet and oral hygiene are crucial factors in increasing the longevity of esthetic direct restorations, materials better able to resist and interact with the conditions of the oral environment are still needed. Reproducing the success of dental amalgams with esthetic materials continues to be the Holy Grail of materials development.
Collapse
Affiliation(s)
- Carmem S Pfeifer
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA.
| | - Fernanda S Lucena
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Matthew G Logan
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Devatha Nair
- University of Colorado Anschutz Medical Campus, School of Dental Medicine, Department of Craniofacial Biology, 17500 E 19th Ave, Aurora, CO 80014, USA
| | - Steven H Lewis
- Oregon Health & Science University, School of Dentistry, Division of Biomaterial and Biomedical Sciences, 2730 S Moody Ave., Portland, OR 97201, USA
| |
Collapse
|
5
|
Bhatt DK, Janzen T, Daemen T, Weissing FJ. Effects of virus-induced immunogenic cues on oncolytic virotherapy. Sci Rep 2024; 14:28861. [PMID: 39572761 PMCID: PMC11582614 DOI: 10.1038/s41598-024-80542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024] Open
Abstract
Oncolytic virotherapy is a promising form of cancer treatment that uses viruses to infect and kill cancer cells. In addition to their direct effects on cancer cells, the viruses stimulate various immune responses partly directed against the tumour. Efforts are made to genetically engineer oncolytic viruses to enhance their immunogenic potential. However, the interplay between tumour growth, viral infection, and immune responses is complex and not fully understood, leading to variable and sometimes counterintuitive therapeutic outcomes. Here, we employ a spatio-temporal model to shed more light on this interplay. We investigate systematically how the properties of virus-induced immunogenic signals (their half-life, rate of spread, and potential to promote T-cell-mediated cytotoxicity) affect the therapeutic outcome. Our simulations reveal that strong immunogenic signals, combined with faster diffusion rates, improve the spread of immune activation, leading to better tumour eradication. However, replicate simulations suggest that the outcome of virotherapy is more stochastic than generally appreciated. Our model shows that virus-induced immune responses can interfere with virotherapy, by targeting virus-infected cancer cells and/or by impeding viral spread. In the presence of immune responses, the mode of virus introduction is important, with systemic viral delivery throughout the tumour yielding the most favourable outcomes. The timing of virus introduction also plays a critical role; depending on the efficacy of the immune response, a later start of virotherapy can be advantageous. Overall, our results emphasise that the rational design of oncolytic viruses requires optimising virus-induced immunogenic signals and strategies that balance viral spread with immune activity for improved therapeutic success.
Collapse
Affiliation(s)
- Darshak K Bhatt
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Thijs Janzen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Toos Daemen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Guo Y, Yuan C, Huang T, Cheng Z. Integrating UHPLC-Q-TOF-MS/MS, network pharmacology, bioinformatics and experimental validation to uncover the anti-cancer mechanisms of TiaoPi AnChang decoction in colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118576. [PMID: 39002822 DOI: 10.1016/j.jep.2024.118576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The TiaoPi AnChang Decoction (TPACD), a Traditional Chinese Medicine (TCM) prescription based on Xiangsha Liujunzi Decoction, has demonstrated clinical efficacy as an adjuvant therapy for colorectal cancer (CRC) patients. However, its specific ingredients and potential mechanisms of action remain unclear. AIM OF THE STUDY To identify the primary active ingredients of TPACD, their molecular targets, and potential mechanisms underlying the efficacy of TPACD in CRC treatment. MATERIALS AND METHODS This study investigated the clinically validated TCM formula TPACD. In vitro and in vivo experiments were used to demonstrate TPACD's regulatory effects on various malignant phenotypes of tumors, providing basic research support for its anti-cancer activity. To understand its pharmacodynamic basis, we utilized ultra-high performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry/mass spectrometry (UHPLC-Q-TOF-MS/MS) to analyze TPACD constituents present in the bloodstream. Network pharmacology and bioinformatics analyses were used to identify potential active components and their molecular targets for TPACD's therapeutic effects in CRC. Subsequent experiments further elucidated its pharmacological mechanism. RESULTS TPACD inhibits various malignant cellular processes, such as cell proliferation, apoptosis, migration, and invasion, and has shown potential anti-CRC activities both in vitro and in vivo. Following the identification of 109 constituents absorbed into the blood from TPACD, network pharmacology analysis predicted 42 potential anti-CRC targets. Clinical analyses highlighted three genes as prognostic key genes of TPACD's therapeutic action: C-X-C motif chemokine ligand 8 (CXCL8), fatty acid binding protein 4 (FABP4), and matrix metallopeptidase 3 (MMP3). Drug sensitivity analyses, molecular docking simulations and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) identified MMP3 as the most promising target for TPACD's anti-CRC action. Enzyme activity assays confirmed that TPACD inhibits MMP3 enzyme activity. Surface plasmon resonance (SPR) characterized the binding affinity between MMP3 and effective active components of TPACD, including luteolin, quercetin, kaempferol, and liensinine. CONCLUSIONS TPACD exhibits anti-CRC activity in vitro and in vivo, with MMP3 identified as a critical target. The active compounds, including luteolin, quercetin, kaempferol, and liensinine, absorbed into the bloodstream, contribute to TPACD's efficacy by targeting MMP3.
Collapse
Affiliation(s)
- Yantong Guo
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Chunsheng Yuan
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ting Huang
- Department of Traditional Chinese Medicine, The People's Hospital of Ningxia Hui Autonomous Region, Ningxia, 750000, China
| | - Zhiqiang Cheng
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
7
|
Lin C, Teng W, Tian Y, Li S, Xia N, Huang C. Immune landscape and response to oncolytic virus-based immunotherapy. Front Med 2024; 18:411-429. [PMID: 38453818 DOI: 10.1007/s11684-023-1048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024]
Abstract
Oncolytic virus (OV)-based immunotherapy has emerged as a promising strategy for cancer treatment, offering a unique potential to selectively target malignant cells while sparing normal tissues. However, the immunosuppressive nature of tumor microenvironment (TME) poses a substantial hurdle to the development of OVs as effective immunotherapeutic agents, as it restricts the activation and recruitment of immune cells. This review elucidates the potential of OV-based immunotherapy in modulating the immune landscape within the TME to overcome immune resistance and enhance antitumor immune responses. We examine the role of OVs in targeting specific immune cell populations, including dendritic cells, T cells, natural killer cells, and macrophages, and their ability to alter the TME by inhibiting angiogenesis and reducing tumor fibrosis. Additionally, we explore strategies to optimize OV-based drug delivery and improve the efficiency of OV-mediated immunotherapy. In conclusion, this review offers a concise and comprehensive synopsis of the current status and future prospects of OV-based immunotherapy, underscoring its remarkable potential as an effective immunotherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Chaolong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Wenzhong Teng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yang Tian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Shaopeng Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| | - Chenghao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
8
|
Yang M, Su Y, Xu K, Zheng H, Cai Y, Wen P, Yang Z, Liu L, Xu P. Develop a Novel Signature to Predict the Survival and Affect the Immune Microenvironment of Osteosarcoma Patients: Anoikis-Related Genes. J Immunol Res 2024; 2024:6595252. [PMID: 39431237 PMCID: PMC11491172 DOI: 10.1155/2024/6595252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 10/22/2024] Open
Abstract
Objective Osteosarcoma (OS) represents a prevalent primary bone neoplasm predominantly affecting the pediatric and adolescent populations, presenting a considerable challenge to human health. The objective of this investigation is to develop a prognostic model centered on anoikis-related genes (ARGs), with the aim of accurately forecasting the survival outcomes of individuals diagnosed with OS and offering insights into modulating the immune microenvironment. Methods The study's training cohort comprised 86 OS patients sourced from The Cancer Genome Atlas database, while the validation cohort consisted of 53 OS patients extracted from the Gene Expression Omnibus database. Differential analysis utilized the GSE33382 dataset, encompassing three normal samples and 84 OS samples. Subsequently, the study executed gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses. Identification of differentially expressed ARGs associated with OS prognosis was carried out through univariate COX regression analysis, followed by LASSO regression analysis to mitigate overfitting risks and construct a robust prognostic model. Model accuracy was assessed via risk curves, survival curves, receiver operating characteristic curves, independent prognostic analysis, principal component analysis, and t-distributed stochastic neighbor embedding (t-SNE) analysis. Additionally, a nomogram model was devised, exhibiting promising potential in predicting OS patient prognosis. Further investigations incorporated gene set enrichment analysis to delineate active pathways in high- and low-risk groups. Furthermore, the impact of the risk prognostic model on the immune microenvironment of OS was evaluated through tumor microenvironment analysis, single-sample gene set enrichment analysis (ssGSEA), and immune infiltration cell correlation analysis. Drug sensitivity analysis was conducted to identify potentially effective drugs for OS treatment. Ultimately, the verification of the implicated ARGs in the model construction was conducted through the utilization of real-time quantitative polymerase chain reaction (RT-qPCR). Results The ARGs risk prognostic model was developed, comprising seven high-risk ARGs (CBS, MYC, MMP3, CD36, SCD, COL13A1, and HSP90B1) and four low-risk ARGs (VASH1, TNFRSF1A, PIP5K1C, and CTNNBIP1). This prognostic model demonstrates a robust capability in predicting overall survival among patients. Analysis of immune correlations revealed that the high-risk group exhibited lower immune scores compared to the low-risk group within our prognostic model. Specifically, CD8+ T cells, neutrophils, and tumor-infiltrating lymphocytes were notably downregulated in the high-risk group, alongside significant downregulation of checkpoint and T cell coinhibition mechanisms. Additionally, three immune checkpoint-related genes (CD200R1, HAVCR2, and LAIR1) displayed significant differences between the high- and low-risk groups. The utilization of a nomogram model demonstrated significant efficacy in prognosticating the outcomes of OS patients. Furthermore, tumor metastasis emerged as an independent prognostic factor, suggesting a potential association between ARGs and OS metastasis. Notably, our study identified eight drugs-Bortezomib, Midostaurin, CHIR.99021, JNK.Inhibitor.VIII, Lenalidomide, Sunitinib, GDC0941, and GW.441756-as exhibiting sensitivity toward OS. The RT-qPCR findings indicate diminished expression levels of CBS, MYC, MMP3, and PIP5K1C within the context of OS. Conversely, elevated expression levels were observed for CD36, SCD, COL13A1, HSP90B1, VASH1, and CTNNBIP1 in OS. Conclusion The outcomes of this investigation present an opportunity to predict the survival outcomes among individuals diagnosed with OS. Furthermore, these findings hold promise for progressing research endeavors focused on prognostic evaluation and therapeutic interventions pertaining to this particular ailment.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yani Su
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haishi Zheng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yongsong Cai
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pengfei Wen
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Bakkalci D, Al-Badri G, Yang W, Nam A, Liang Y, Khurram SA, Heavey S, Fedele S, Cheema U. Spatial transcriptomic interrogation of the tumour-stroma boundary in a 3D engineered model of ameloblastoma. Mater Today Bio 2024; 24:100923. [PMID: 38226014 PMCID: PMC10788620 DOI: 10.1016/j.mtbio.2023.100923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024] Open
Abstract
Stromal cells are key components of the tumour microenvironment (TME) and their incorporation into 3D engineered tumour-stroma models is essential for tumour mimicry. By engineering tumouroids with distinct tumour and stromal compartments, it has been possible to identify how gene expression of tumour cells is altered and influenced by the presence of different stromal cells. Ameloblastoma is a benign epithelial tumour of the jawbone. In engineered, multi-compartment tumouroids spatial transcriptomics revealed an upregulation of oncogenes in the ameloblastoma transcriptome where osteoblasts were present in the stromal compartment (bone stroma). Where a gingival fibroblast stroma was engineered, the ameloblastoma tumour transcriptome revealed increased matrix remodelling genes. This study provides evidence to show the stromal-specific effect on tumour behaviour and illustrates the importance of engineering biologically relevant stroma for engineered tumour models. Our novel results show that an engineered fibroblast stroma causes the upregulation of matrix remodelling genes in ameloblastoma which directly correlates to measured invasion in the model. In contrast the presence of a bone stroma increases the expression of oncogenes by ameloblastoma cells.
Collapse
Affiliation(s)
- Deniz Bakkalci
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, W1W 7TS, London, UK
| | - Georgina Al-Badri
- Department of Mathematics, University College London, 25 Gordon Street, WC1H 0AY, London, UK
| | - Wei Yang
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109, USA
| | - Andy Nam
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109, USA
| | - Yan Liang
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109, USA
| | - Syed Ali Khurram
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, S10 2TA, Sheffield, UK
| | - Susan Heavey
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, W1W 7TS, London, UK
| | - Stefano Fedele
- Eastman Dental Institute, University College London, London, UK
| | - Umber Cheema
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, W1W 7TS, London, UK
| |
Collapse
|
10
|
Chen K, Zhu P, Chu M, Tao H, Wang Q, Lv S, Huang L, Geng D. What do osteoporosis and osteoarthritis have in common? An integrated study of overlapping differentially expressed genes in bone mesenchymal stem cells of osteoporosis and osteoarthritis. Gene 2024; 893:147914. [PMID: 37865148 DOI: 10.1016/j.gene.2023.147914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE For identification of aberrantly expressed genes in mesenchymal stem cells of osteoporosis (OP) and osteoarthritis (OA), Gene Expression Omnibus (GEO) datasets were integrated to investigate the intersection point. METHODS GSE35958 (osteoporosis) and GSE19664 (osteoarthritis) datasets were obtained from GEO database. The abnormally expressed genes were analyzed by GEO2R. Functional enrichment was explored by Metascape database and R software. The String database and Cytoscape software were used to build the protein-protein interaction network and identify hub genes. GSE35957 and GSE116925 were used as verification datasets. Single-cell analysis and pseudotime analysis were undertaken. CTDbase, Network Analyst, HPA database, HERB database and MIRW database were used to research the information, tissue and cell distribution, regulation, interaction and ingredients targeting the hub genes. Additionally, in vitro experiments such as RT-PCR, ALP staining and immunofluorescence were undertaken as verification tests. RESULTS Ten hub genes were identified in this study. All these genes play an important role in bone or cartilage generation. They have diagnostic values and therapeutic potential for OA and OP. Single-cell analysis visualized the cell distribution and pseudotime distribution of these genes. Some potential therapeutic ingredients of these genes were identified, such as curcumin, wogonin and glycerin. In vitro experiments, RT-PCR results showed that COL9A3 and MMP3 were downregulated and PTH1R was upregulated during osteogenic induction of BMSC. Immunohistochemical results showed the expression trend of MMP3 and COL2A1. CONCLUSION Ten abnormal hub genes of osteoporosis and osteoarthritis were identified successfully by this study. They were important regulatory genes for healthy bone and cartilage. These genes could be the common connections between osteoporosis and osteoarthritis as well as treatment targets. Further study of the regulatory mechanism and treatment effects of these genes would be valuable. The results of this study could contribute to further research.
Collapse
Affiliation(s)
- Kai Chen
- Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu 226600, China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China; Department of Orthopedics, Yixing People's Hospital, Tongzhenguan Road 75, Yixing, Jiangsu 214200, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China
| | - Qiufei Wang
- Department of Orthopedics, Changshu First People's Hospital, Shuyuan Road 1, Changshu, Jiangsu 215500, China
| | - Shujun Lv
- Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu 226600, China.
| | - Lixin Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
11
|
Seyed-Khorrami SM, Azadi A, Rastegarvand N, Habibian A, Soleimanjahi H, Łos MJ. A promising future in cancer immunotherapy: Oncolytic viruses. Eur J Pharmacol 2023; 960:176063. [PMID: 37797673 DOI: 10.1016/j.ejphar.2023.176063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Alongside the conventional methods, attention has been drawn to the use of immunotherapy-based methods for cancer treatment. Immunotherapy has developed as a therapeutic option that can be more specific with better outcomes in tumor treatment. It can boost or regulate the immune system behind the targeted virotherapy. Virotherapy is a kind of oncolytic immunotherapy that investigated broadly in cancer treatment in recent decades, due to its several advantages. According to recent advance in the field of understanding cancer cell biology and its occurrence, as well as increasing the knowledge about conditionally replicating oncolytic viruses and their destructive function in the tumor cells, nowadays, it is possible to apply this strategy in the treatment of malignancies. Relying on achievements in clinical trials of oncolytic viruses, we can certainly expect that this therapeutic perception can play a more central role in cancer treatment. In cancer treatment, combination therapy using oncolytic viruses alongside standard cancer treatment methods and other immunotherapy-based treatments can expect more promising results in the future.
Collapse
Affiliation(s)
| | - Arezou Azadi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasrin Rastegarvand
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ala Habibian
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100, Gliwice, Poland; LinkoCare Life Sciences AB, Linkoping, Sweden.
| |
Collapse
|
12
|
Liu K, Cao Z, Huang S, Kong F. Mechanism underlying the effect of Pulsatilla decoction in hepatocellular carcinoma treatment: a network pharmacology and in vitro analysis. BMC Complement Med Ther 2023; 23:405. [PMID: 37950195 PMCID: PMC10636957 DOI: 10.1186/s12906-023-04244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Currently, hepatocellular carcinoma (HCC) is associated with a poor prognosis. Moreover, there exist limited strategies for treating HCC. Pulsatilla decoction (PD), a traditional Chinese medicine formula, has been used to treat inflammatory bowel disease and several cancer types. Accordingly, we explored the mechanism of PD in HCC treatment via network pharmacology and in vitro experiments. METHODS Online databases were searched for gene data, active components, and potential target genes associated with HCC development. Subsequently, bioinformatics analysis was performed using protein-protein interaction and Network Construction and Kyoto Encyclopedia of Genes and Genomes (KEGG) to screen for potential anticancer components and therapeutic targets of PD. Finally, the effect of PD on HCC was further verified by in vitro experiments. RESULTS Network pharmacological analysis revealed that 65 compounds and 180 possible target genes were associated with the effect of PD on HCC. These included PI3K, AKT, NF-κB, FOS, and NFKBIA. KEGG analysis demonstrated that PD exerted its effect on HCC mainly via the PI3K-AKT, IL-17, and TNF signaling pathways. Cell viability and cell cycle experiments revealed that PD could significantly inhibit cancer cell proliferation and kill HCC cells by inducing apoptosis. Furthermore, western blotting confirmed that apoptosis was mediated primarily via the PI3K-AKT, IL-17, and TNF signaling pathways. CONCLUSION To the best of our knowledge, this is the first study to elucidate the molecular mechanism and potential targets of PD in the treatment of HCC using network pharmacology.
Collapse
Affiliation(s)
- Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenyu Cao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Siqi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fanhua Kong
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Wang L, Donahue G, Zhang C, Havas A, Lei X, Xu C, Wang W, Vahedi G, Adams PD, Berger SL. Dynamic enhancer interactome promotes senescence and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541769. [PMID: 37292952 PMCID: PMC10245931 DOI: 10.1101/2023.05.22.541769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gene expression programs are regulated by enhancers which act in a context-specific manner, and can reside at great distances from their target genes. Extensive three-dimensional (3D) genome reorganization occurs in senescence, but how enhancer interactomes are reconfigured during this process is just beginning to be understood. Here we generated high-resolution contact maps of active enhancers and their target genes, assessed chromatin accessibility, and established one-dimensional maps of various histone modifications and transcription factors to comprehensively understand the regulation of enhancer configuration during senescence. Hyper-connected enhancer communities/cliques formed around genes that are highly expressed and within essential gene pathways in each cell state. In addition, motif analysis indicates the involvement of specific transcription factors in hyper-connected regulatory elements in each condition; importantly, MafK, a bZIP family transcription factor, was upregulated in senescence, and reduced expression of MafK ameliorated the senescence phenotypes. Because the accumulation of senescent cells is a key feature of aging, we further investigated enhancer connectomes in the liver of young and aged mice. Hyper-connected enhancer communities were identified during aging, which regulate essential genes that maintain cell differentiation and homeostasis. These findings reveal that hyper-connected enhancer communities correlate with high gene expression in senescence and aging and provide potential hotspots for therapeutic intervention in aging and age-associated diseases.
Collapse
|
14
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
Abstract
Oncolytic viruses (OVs) are an emerging class of cancer therapeutics that offer the benefits of selective replication in tumour cells, delivery of multiple eukaryotic transgene payloads, induction of immunogenic cell death and promotion of antitumour immunity, and a tolerable safety profile that largely does not overlap with that of other cancer therapeutics. To date, four OVs and one non-oncolytic virus have been approved for the treatment of cancer globally although talimogene laherparepvec (T-VEC) remains the only widely approved therapy. T-VEC is indicated for the treatment of patients with recurrent melanoma after initial surgery and was initially approved in 2015. An expanding body of data on the clinical experience of patients receiving T-VEC is now becoming available as are data from clinical trials of various other OVs in a range of other cancers. Despite increasing research interest, a better understanding of the underlying biology and pharmacology of OVs is needed to enable the full therapeutic potential of these agents in patients with cancer. In this Review, we summarize the available data and provide guidance on optimizing the use of OVs in clinical practice, with a focus on the clinical experience with T-VEC. We describe data on selected novel OVs that are currently in clinical development, either as monotherapies or as part of combination regimens. We also discuss some of the preclinical, clinical and regulatory hurdles that have thus far limited the development of OVs.
Collapse
|
16
|
Wiśniowski T, Bryda J, Wątroba S. The role of matrix metalloproteinases in pathogenesis, diagnostics, and treatment of human prostate cancer. POSTEP HIG MED DOSW 2023. [DOI: 10.2478/ahem-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Abstract
The prostate gland is highly susceptible to oncogenic transformation, many times more than other sex tissues, such as seminal vesicles. In fact, prostate cancer (PCa) will be diagnosed in one in seven lifetime patients, making PCa the subject of intense research aimed at clarifying its biology and providing adequate treatment. PCa is the fourth most common cancer in the world in terms of the overall population and the second most common cancer for the male population. It is postulated that the development of PCa may be influenced by dietary factors, physical and sexual activity, androgens, obesity, and inflammation, but their role in the development of prostate cancer still remains unclear. Extracellular matrix metalloproteinases (MMPs) and tissue metalloproteinase inhibitors (TIMPs) play an important role in many physiological and pathological processes, including proliferation, migration, invasion, cell differentiation, participation in inflammatory processes and angiogenesis. Numerous studies point to a direct relationship between MMPs and both local tumor invasion and the formation of distant metastases. High activity of MMPs is observed in solid tumors of various origins, which positively correlates with a poor overall survival rate. Although biochemical diagnostic markers of PCa are currently available, from the point of view of clinical practice, it seems particularly important to develop new and more sensitive markers allowing for early diagnosis and long-term monitoring of patients after PCa treatment, and the assessment of MMP activity in urine and serum of patients are potential factors that could play such a role.
Collapse
|
17
|
Rivera-Caraballo KA, Nair M, Lee TJ, Kaur B, Yoo JY. The complex relationship between integrins and oncolytic herpes Simplex Virus 1 in high-grade glioma therapeutics. Mol Ther Oncolytics 2022; 26:63-75. [PMID: 35795093 PMCID: PMC9233184 DOI: 10.1016/j.omto.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
High-grade gliomas (HGGs) are lethal central nervous system tumors that spread quickly through the brain, making treatment challenging. Integrins are transmembrane receptors that mediate cell-extracellular matrix (ECM) interactions, cellular adhesion, migration, growth, and survival. Their upregulation and inverse correlation in HGG malignancy make targeting integrins a viable therapeutic option. Integrins also play a role in herpes simplex virus 1 (HSV-1) entry. Oncolytic HSV-1 (oHSV) is the most clinically advanced oncolytic virotherapy, showing a superior safety and efficacy profile over standard cancer treatment of solid cancers, including HGG. With the FDA-approval of oHSV for melanoma and the recent conditional approval of oHSV for malignant glioma in Japan, usage of oHSV for HGG has become of great interest. In this review, we provide a systematic overview of the role of integrins in relation to oHSV, with a special focus on its therapeutic potential against HGG. We discuss the pros and cons of targeting integrins during oHSV therapy: while integrins play a pro-therapeutic role by acting as a gateway for oHSV entry, they also mediate the innate antiviral immune responses that hinder oHSV therapeutic efficacy. We further discuss alternative strategies to regulate the dual functionality of integrins in the context of oHSV therapy.
Collapse
Affiliation(s)
- Kimberly Ann Rivera-Caraballo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mitra Nair
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
18
|
Busuioc C, Nutu A, Braicu C, Zanoaga O, Trif M, Berindan-Neagoe I. Analysis of Differentially Expressed Genes, MMP3 and TESC, and Their Potential Value in Molecular Pathways in Colon Adenocarcinoma: A Bioinformatics Approach. BIOMEDINFORMATICS 2022; 2:474-491. [DOI: 10.3390/biomedinformatics2030030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Despite the great progress in its early diagnosis and treatment, colon adenocarcinoma (COAD) is still poses important issues to clinical management. Therefore, the identification of novel biomarkers or therapeutic targets for this disease is important. Using UALCAN, the top 25 upregulated and downregulated genes in COAD were identified. Then, a Kaplan–Meier plotter was employed for these genes for survival analysis, revealing the correlation with overall survival rate only for MMP3 (Matrix Metallopeptidase 3) and TESC (Tescalcin). Despite this, the mRNA expression levels were not correlated with the tumor stages or nodal metastatic status. MMP3 and TESC are relevant targets in COAD that should be additionally validated as biomarkers for early diagnosis and prevention. Ingenuity Pathway Analysis revealed the top relevant network linked to Post-Translational Modification, Protein Degradation, and Protein Synthesis, where MMP3 was at the core of the network. Another important network was related to cell cycle regulation, TESC being a component of this. We should also not underestimate the complex regulatory mechanisms mediated by the interplay of the multiple other regulatory molecules, emphasizing the interconnection with molecules related to invasion and migration involved in COAD, that might serve as the basis for the development of new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Constantin Busuioc
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Bremen Stuhr, Germany
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Therapeutic Efficacy of Oncolytic Viruses in Fighting Cancer: Recent Advances and Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3142306. [PMID: 35910836 PMCID: PMC9337963 DOI: 10.1155/2022/3142306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 12/22/2022]
Abstract
Immunotherapy is at the cutting edge of modern cancer treatment. Innovative medicines have been developed with varying degrees of success that target all aspects of tumor biology: tumors, niches, and the immune system. Oncolytic viruses (OVs) are a novel and potentially immunotherapeutic approach for cancer treatment. OVs reproduce exclusively in cancer cells, causing the tumor mass to lyse. OVs can also activate the immune system in addition to their primary activity. Tumors create an immunosuppressive environment by suppressing the immune system’s ability to respond to tumor cells. By injecting OVs into the tumor, the immune system is stimulated, allowing it to generate a robust and long-lasting response against the tumor. The essential biological properties of oncolytic viruses, as well as the underlying mechanisms that enable their usage as prospective anticancer medicines, are outlined in this review. We also discuss the increased efficacy of virotherapy when combined with other cancer medications.
Collapse
|