1
|
Wang Z, Lai R, Wang X, Chen X, Zhou Y, Li S, Qiu X, Zeng Z, Yuan J, Mao J, Chen Z, Wang J. Targeted Penetrating Motif Engineering of BH3 Mimetic: Harnessing Non-Canonical Amino Acids for Coinhibition of MCL-1 and BCL-xL in Acute Myeloid Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503682. [PMID: 40305693 DOI: 10.1002/advs.202503682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/15/2025] [Indexed: 05/02/2025]
Abstract
Acute Myeloid Leukemia (AML) remains a formidable clinical challenge, predominantly due to the emergence of resistance to existing therapeutic regimens, including BCL-2 inhibitors like Venetoclax. Here, a novel approach is introduced by engineering BH3 mimetics utilizing non-canonical amino acids (ncAAs) to achieve dual inhibition of MCL-1 and BCL-xL. Through site saturation mutagenesis scanning, the I58(Chg) mutation is identified, significantly enhancing binding affinity with IC50 values of 2.77 nm for MCL-1 and 10.69 nm for BCL-xL, reflecting an increase of fourfold or more. The developed vMIP-II-TAT-I peptide, incorporating a CXCR4-targeted penetrating motif, demonstrated superior cellular uptake, with mean fluorescence intensity (MFI) 7.2-fold higher in CXCR4-positive AML cells and exhibited a high selectivity index (SI) for AML cells, with minimal impact on normal human hematopoietic stem cells (HSCs). When combined with Venetoclax, this peptide induced synergistic apoptosis, reducing tumor burden and prolonging survival in an AML mouse model, with median survival extended to 53 days from 37 days with Venetoclax alone. These findings reveal the therapeutic potential of dual inhibition in overcoming Venetoclax resistance and selectively targeting leukemic cells with reduced off-target effects, while laying the foundation for developing advanced BH3 mimetics with enhanced targeting, binding affinity, and efficacy for AML treatment.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Ruizhi Lai
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Youjian Zhou
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shengbin Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaohui Qiu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zekai Zeng
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Jianye Yuan
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Jinghuan Mao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
2
|
Zhang YW, Schönberger K, Cabezas‐Wallscheid N. Bidirectional interplay between metabolism and epigenetics in hematopoietic stem cells and leukemia. EMBO J 2023; 42:e112348. [PMID: 38010205 PMCID: PMC10711668 DOI: 10.15252/embj.2022112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 11/29/2023] Open
Abstract
During the last decades, remarkable progress has been made in further understanding the complex molecular regulatory networks that maintain hematopoietic stem cell (HSC) function. Cellular and organismal metabolisms have been shown to directly instruct epigenetic alterations, and thereby dictate stem cell fate, in the bone marrow. Epigenetic regulatory enzymes are dependent on the availability of metabolites to facilitate DNA- and histone-modifying reactions. The metabolic and epigenetic features of HSCs and their downstream progenitors can be significantly altered by environmental perturbations, dietary habits, and hematological diseases. Therefore, understanding metabolic and epigenetic mechanisms that regulate healthy HSCs can contribute to the discovery of novel metabolic therapeutic targets that specifically eliminate leukemia stem cells while sparing healthy HSCs. Here, we provide an in-depth review of the metabolic and epigenetic interplay regulating hematopoietic stem cell fate. We discuss the influence of metabolic stress stimuli, as well as alterations occurring during leukemic development. Additionally, we highlight recent therapeutic advancements toward eradicating acute myeloid leukemia cells by intervening in metabolic and epigenetic pathways.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | | | | |
Collapse
|
3
|
Schmelter C, Fomo KN, Brueck A, Perumal N, Markowitsch SD, Govind G, Speck T, Pfeiffer N, Grus FH. Glaucoma-Associated CDR1 Peptide Promotes RGC Survival in Retinal Explants through Molecular Interaction with Acidic Leucine Rich Nuclear Phosphoprotein 32A (ANP32A). Biomolecules 2023; 13:1161. [PMID: 37509196 PMCID: PMC10377047 DOI: 10.3390/biom13071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Glaucoma is a complex, multifactorial optic neuropathy mainly characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, resulting in a decline of visual function. The pathogenic molecular mechanism of glaucoma is still not well understood, and therapeutic strategies specifically addressing the neurodegenerative component of this ocular disease are urgently needed. Novel immunotherapeutics might overcome this problem by targeting specific molecular structures in the retina and providing direct neuroprotection via different modes of action. Within the scope of this research, the present study showed for the first time beneficial effects of the synthetic CDR1 peptide SCTGTSSDVGGYNYVSWYQ on the viability of RGCs ex vivo in a concentration-dependent manner compared to untreated control explants (CTRL, 50 µg/mL: p < 0.05 and 100 µg/mL: p < 0.001). Thereby, this specific peptide was identified first as a potential biomarker candidate in the serum of glaucoma patients and was significantly lower expressed in systemic IgG molecules compared to healthy control subjects. Furthermore, MS-based co-immunoprecipitation experiments confirmed the specific interaction of synthetic CDR1 with retinal acidic leucine-rich nuclear phosphoprotein 32A (ANP32A; p < 0.001 and log2 fold change > 3), which is a highly expressed protein in neurological tissues with multifactorial biological functions. In silico binding prediction analysis revealed the N-terminal leucine-rich repeat (LRR) domain of ANP32A as a significant binding site for synthetic CDR1, which was previously reported as an important docking site for protein-protein interactions (PPI). In accordance with these findings, quantitative proteomic analysis of the retinae ± CDR1 treatment resulted in the identification of 25 protein markers, which were significantly differentially distributed between both experimental groups (CTRL and CDR1, p < 0.05). Particularly, acetyl-CoA biosynthesis I-related enzymes (e.g., DLAT and PDHA1), as well as cytoskeleton-regulating proteins (e.g., MSN), were highly expressed by synthetic CDR1 treatment in the retina; on the contrary, direct ANP32A-interacting proteins (e.g., NME1 and PPP2R4), as well as neurodegenerative-related markers (e.g., CEND1), were identified with significant lower abundancy in the CDR1-treated retinae compared to CTRL. Furthermore, retinal protein phosphorylation and histone acetylation were also affected by synthetic CDR1, which are both partially controlled by ANP32A. In conclusion, the synthetic CDR1 peptide provides a great translational potential for the treatment of glaucoma in the future by eliciting its neuroprotective mechanism via specific interaction with ANP32A's N terminal LRR domain.
Collapse
Affiliation(s)
- Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Alina Brueck
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Gokul Govind
- Institute of Physics, Johannes Gutenberg University, 55131 Mainz, Germany; (G.G.)
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg University, 55131 Mainz, Germany; (G.G.)
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (C.S.); (K.N.F.); (A.B.); (N.P.); (N.P.)
| |
Collapse
|
4
|
丁 虹, 李 肖, 周 璐, 崔 智, 蒙 海, 王 娟. [Silenced ANP32A inhibits the growth, invasion and migration of colorectal cancer in vitro via the inactivation of AKT pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:52-59. [PMID: 36856210 PMCID: PMC9978733 DOI: 10.12122/j.issn.1673-4254.2023.01.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To investigate the effect of ANP32A silencing on invasion and migration of colon cancer cells and the influence of the activity of AKT signaling pathway on this effect. METHODS Colorectal cancer HCT116 and SW480 were transfected with a small interfering RNA targeting ANP32A via a lentiviral vector. At 24, 48 and 72 h after the transfection, the changes in cell proliferation and AKT activity in the cells were detected using MTT assay and Western blotting, respectively. HCT116 and SW480 cells were treated with the AKT agonist SC79 or its inhibitor MK2206 for 24, 48, 72 and 96 h, and the changes in cell migration and invasion ability were analyzed using Transwell chamber assay and cell proliferation was assessed using MTT assay. The effects of SC79 and MK2206 on migration and invasion abilities of HCT116 and SW480 cells with or without ANP32A silencing were examined using wound healing and Transwell chamber assays, and the changes in the expression of metadherin (MTDH), a factor associated with cells invasion and migration, was detected with Western blotting. RESULTS Lentivirus-mediated ANP32A silencing significantly down-regulated the activity of AKT and inhibited the proliferation of both HCT116 and SW480 cells (P < 0.01). The application of AKT inhibitor MK2206 obviously inhibited the proliferation, invasion and migration of the colorectal cancer cells (P < 0.05), while the AKT agonist SC79 significantly promoted the invasion and migration of the cells (P < 0.01). In HCT116 and SW480 cells with ANP32A silencing, treatment with MK2206 strongly enhanced the inhibitory effects of ANP32A silencing on cell invasion and migration (P < 0.05) and the expression of MTDH, while SC79 partially reversed these inhibitory effects (P < 0.01). CONCLUSION ANP32A silencing inhibits invasion and migration of colorectal cancer cells possibly by inhibiting the activation of the AKT signaling pathway.
Collapse
Affiliation(s)
- 虹芳 丁
- 桂林医学院基础医学院,广西 桂林 541199Faculty of Basic Medical Sciences, of Guilin Medical College, Guilin 541199, China
| | - 肖娟 李
- 桂林医学院药学院,广西 桂林 541199School of Pharmacy, of Guilin Medical College, Guilin 541199, China
| | - 璐炜 周
- 桂林医学院药学院,广西 桂林 541199School of Pharmacy, of Guilin Medical College, Guilin 541199, China
| | - 智 崔
- 桂林医学院基础医学院,广西 桂林 541199Faculty of Basic Medical Sciences, of Guilin Medical College, Guilin 541199, China
| | - 海德 蒙
- 桂林医学院生物技术学院,广西 桂林 541199School of Intelligent Medicine and Biotechnology, of Guilin Medical College, Guilin 541199, China
| | - 娟 王
- 桂林医学院基础医学院,广西 桂林 541199Faculty of Basic Medical Sciences, of Guilin Medical College, Guilin 541199, China
| |
Collapse
|
5
|
ANP32 Family as Diagnostic, Prognostic, and Therapeutic Biomarker Related to Immune Infiltrates in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:5791471. [PMID: 35280441 PMCID: PMC8913125 DOI: 10.1155/2022/5791471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide, with high incidence and mortality rate. There is an urgent need to identify effective diagnostic and prognostic biomarkers for HCC. Members of the acidic leucine-rich nucleophosphoprotein 32 (ANP32) family, which mainly includes ANP32A, ANP32B, and ANP32E, are abnormally expressed and have prognostic value in certain cancers. However, the diagnostic, prognostic, and therapeutic value of ANP32 family members in HCC has not yet been fully studied. In this study, we identified the diagnostic and prognostic value of ANP32 family members in HCC. Transcriptome data from public databases, such as the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, suggested that ANP32A, ANP32B, and ANP32E were upregulated in HCC tissues, and high expression of ANP32 family members was associated with advanced pathologic stage and histologic grade. Our immunohistochemistry and western blot results further verified the differential expression of ANP32 family members. ANP32A, ANP32B, and ANP32E had an outstanding diagnostic potential. Survival analysis of HCC patients in TCGA databases demonstrated that ANP32A, ANP32B, and ANP32E were associated with poor overall survival (OS) and disease-specific survival (DSS). Univariate and multivariate Cox analyses suggested the capability of ANP32B and ANP32E to independently predict the OS and DSS of HCC patients. Gene set enrichment analysis (GSEA) showed that ANP32 family members were associated with immune response, epidermal cell differentiation, and stem cell proliferation. Expression of ANP32 family members was associated with immune cell infiltration and immune status in the tumor microenvironment of HCC, and patients with high ANP32 family expression had poor sensitivity to immunotherapy. Finally, we identified potential chemotherapy drugs for HCC patients with high ANP32 family expression by CellMiner database. This study suggested the diagnostic, prognostic, and therapeutic roles of the ANP32 family in HCC patients, providing potential therapeutic targets for HCC.
Collapse
|