1
|
Chen Z, Zhang Y. Development of an immune-related gene signature applying Ridge method for improving immunotherapy responses and clinical outcomes in lung adenocarcinoma. PeerJ 2025; 13:e19121. [PMID: 40352269 PMCID: PMC12066106 DOI: 10.7717/peerj.19121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/17/2025] [Indexed: 05/14/2025] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a major cause of cancer mortality. Considering the critical role of tumor infiltrating lymphocytes in effective immunotherapy, this study was designed to screen molecular markers related to tumor infiltrating cells in LUAD, aiming to improve immunotherapy response during LUAD therapy. Methods The ConsensusClusterPlus method was used for clustering immune molecular subtypes of LUAD. Immune cell infiltration and immunotherapeutic potential in each subtype was evaluated employing single-sample gene set enrichment analysis (ssGSEA), Tumor Immune Dysfunction and Exclusion (TIDE), and Immunophenoscore (IPS). Immune-related co-expression modules were classified by weighted gene co-expression network analysis (WGCNA) analysis. The sequencing data of immune-related genes were comprehensively analyzed by introducing a new computational framework and 10 machine learning algorithms (a total of 101 combinations) to determine the prognostic genes, which were further combined to develop an immune prognostic signature (IMMPS) using the stepCox and Ridge methods. The expression of the signature genes was validated by quantitative real-time PCR (qRT-PCR). Results Samples from The Cancer Genome Atlas dataset (TCGA-LUAD) were divided into two subtypes (immunosuppressive subgroup C1 and immune-activated subgroup C2); notably, the C2 subgroup was more likely to benefit from immunotherapy (p < 0.05). An IMMPS developed based on seven immune infiltrating cell-related genes (SEMA7A, EFHD2, CHST11, SLC24A4, MAL, JCHAIN, and SCARF1) could accurately predict the overall survival of LUAD in five LUAD cohorts, with an average C-index higher than 0.69. LUAD patients with a low IMMPS value had a higher immune cell infiltration (p < 0.05). In addition, the IMMPS exhibited better prediction performance in comparison to 154 published gene signatures, suggesting that the IMMPS was an independent prognostic risk factor for evaluating the overall survival of LUAD patients. Since BTNL9 was the most relevant immune checkpoint gene, in vitro experiment showed that the expression of the seven key genes (SEMA7A, EFHD2, CHST11, SLC24A4, MAL, JCHAIN, and SCARF1) in LUAD cell lines was consistent with that in normal lung epithelial cells after inhibiting BTNL9 expression (p < 0.05). Conclusions Our results contributed to a better understanding of immunological characteristics of LUAD. The IMMPS could serve as a promising tool for improving the clinical outcome of patients suffering from LUAD.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Cardiothoracic Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Yongjun Zhang
- Department of Cardiothoracic Surgery, Xiangyang Central Hospital, Xiangyang, China
| |
Collapse
|
2
|
Kluge K, Lotz V, Einspieler H, Haberl D, Spielvogel C, Amereller D, Kramer G, Grubmüller B, Shariat S, Haug A, Hacker M, Kenner L, Egger G. Imaging and outcome correlates of ctDNA methylation markers in prostate cancer: a comparative, cross-sectional [⁶⁸Ga]Ga-PSMA-11 PET/CT study. Clin Epigenetics 2025; 17:36. [PMID: 40001235 PMCID: PMC11863674 DOI: 10.1186/s13148-025-01811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/02/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND To validate the clinical utility of a previously identified circulating tumor DNA methylation marker (meth-ctDNA) panel for disease detection and survival outcomes, meth-ctDNA markers were compared to PSA levels and PSMA PET/CT findings in men with different stages of prostate cancer (PCa). METHODS 122 PCa patients who underwent [⁶⁸Ga]Ga-PSMA-11 PET/CT and plasma sampling (03/2019-08/2021) were analyzed. cfDNA was extracted, and a panel of 8 individual meth-ctDNA markers was queried. PET scans were qualitatively and quantitatively assessed. PSA and meth-ctDNA markers were compared to PET findings, and their relative prognostic value was evaluated. RESULTS PSA discriminated best between negative and tumor-indicative PET scans in all (AUC 0.77) and hormone-sensitive (hsPC) patients (0.737). In castration-resistant PCa (CRPC), the meth-ctDNA marker KLF8 performed best (AUC 0.824). CHST11 differentiated best between non- and metastatic scans (AUC 0.705) overall, KLF8 best in hsPC and CRPC (AUC 0.662, 0.85). Several meth-ctDNA markers correlated low to moderate with the tumor volume in all (5/8) and CRPC patients (6/8), while PSA levels correlated moderately to strongly with the tumor volume in all groups (all p < 0.001). CRPC overall survival was independently associated with LDAH and PSA (p = 0.0168, p < 0.001). CONCLUSION The studied meth-ctDNA markers are promising for the minimally-invasive detection and prognostication of CRPC but do not allow for clinical characterization of hsPC. Prospective studies are warranted for their use in therapy response and outcome prediction in CRPC and potential incremental value for PCa monitoring in PSA-low settings.
Collapse
Affiliation(s)
- Kilian Kluge
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDLAM), Medical University of Vienna, Vienna, Austria
| | - Vincent Lotz
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Holger Einspieler
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - David Haberl
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDLAM), Medical University of Vienna, Vienna, Austria
| | - Clemens Spielvogel
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Dominik Amereller
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Grubmüller
- Department of Urology and Andrology, University Hospital Krems, Krems, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Shahrokh Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Urology, Department of Special Surgery, The University of Jordan, Amman, Jordan
- Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
| | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDLAM), Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Lukas Kenner
- Christian Doppler Laboratory for Applied Metabolomics (CDLAM), Medical University of Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Peng HY, Chang CW, Wu PH, Li LJ, Lin YL, Hsiao M, Chang JY, Chang PMH, Lee HL, Chang WM. Oral Cancer-Derived miR-762 Suppresses T-Cell Infiltration and Activation by Horizontal Inhibition of CXCR3 Expression. Int J Mol Sci 2025; 26:1077. [PMID: 39940842 PMCID: PMC11817288 DOI: 10.3390/ijms26031077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an immune-cold tumor characterized by an immunosuppressive microenvironment with low cytotoxic activity to eliminate tumor cells. Tumor escape is one of the initial steps in cancer development. Understanding the underlying mechanisms of cancer escape can help researchers develop new treatment strategies. In this study, we prove the oral oncogenic miR-762 can suppress T-cell recruitment and cytotoxic activation in the tumor microenvironment (TME) through horizontal transmission from OSCC cells to adaptive immune T cells. Public database analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine the prognosis and expression of miR-762 in OSCC. T-cell activation by flow cytometry, qRT-PCR, IL-12 secretion, and T-cell recruitment and cytotoxicity abilities were conducted in the miR-762 manipulation T-cell and OSCC-T-cell co-culture system. A luciferase reporter and CXCR3 protein expression were also carried out to validate the direct interaction between CXCR3 and microRNA (miR)-762. This horizontal transmission of miR-762 directly suppresses CXCR3 expression in T cells, inhibiting CXCR3-induced T-cell migration and downstream T-cell cytotoxic activity by disrupting AKT activation. Additionally, miR-762 transmission suppressed T-cell activation marker expression, T-cell proliferation, IL-12 secretion, and T-cell cytotoxicity. In conclusion, our findings reveal a novel miR-762/CXCR3 axis that regulates the immunosuppressive microenvironment in OSCC and may be a potential RNA-targeted therapeutic approach to restore the anti-tumor immune response in OSCC treatment.
Collapse
Affiliation(s)
- Hsuan-Yu Peng
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Research Center of Oral Translational Medicine, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Chia-Wei Chang
- Division of Family Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan;
| | - Ping-Hsiu Wu
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Proton Center, Taipei Medical University, Taipei 110, Taiwan
| | - Li-Jie Li
- Ph.D. Program of School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan
| | - Yu-Lung Lin
- The Ph.D. Program for Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Jang-Yang Chang
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsin-Lun Lee
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Proton Center, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Research Center of Oral Translational Medicine, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
4
|
Gao G, Zhang X. Broadening horizons: research on ferroptosis in lung cancer and its potential therapeutic targets. Front Immunol 2025; 16:1542844. [PMID: 39917300 PMCID: PMC11799241 DOI: 10.3389/fimmu.2025.1542844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/03/2025] [Indexed: 02/09/2025] Open
Abstract
Ferroptosis is a novel form of cell death distinct from traditional mechanisms, characterized by the accumulation of iron ions and the production of lipid peroxides. It not only affects the survival of tumor cells but is also closely linked to changes in the tumor microenvironment. Lung cancer is one of the leading malignancies worldwide in terms of incidence and mortality, and its complex biological mechanisms and resistance make treatment challenging. Recent studies have shown that ferroptosis plays a key role in the onset and progression of lung cancer, with its intricate regulatory mechanisms influencing tumor development and response to therapy. As research into ferroptosis deepens, related molecular pathways, such as glutamate metabolism, iron metabolism, and antioxidant defense, have been gradually revealed. However, in clinical practice, ferroptosis-based therapeutic strategies for lung cancer are still in their early stages. Challenges remain, including the incomplete understanding of the specific mechanisms of ferroptosis, insufficient research on related regulatory factors, and limited insight into the interactions within the tumor microenvironment. Therefore, effective modulation of ferroptosis to enhance lung cancer treatment remains an urgent issue. This review summarizes the biological mechanisms of ferroptosis, analyzes the regulatory factors of ferroptosis in lung cancer cells and their interaction with the tumor microenvironment, and further explores potential therapeutic strategies targeting ferroptosis. By synthesizing the latest research, this paper aims to provide new perspectives and directions for lung cancer treatment, with the goal of advancing clinical applications.
Collapse
Affiliation(s)
| | - Xindi Zhang
- Department of Pulmonary Disease (Department of Respiratory and Critical Care Medicine), Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
5
|
Desterke C, Fu Y, Francés R, Mata-Garrido J. Metabolic Transcriptional Activation in Ulcerative Colitis Identified Through scRNA-seq Analysis. Genes (Basel) 2024; 15:1412. [PMID: 39596612 PMCID: PMC11593927 DOI: 10.3390/genes15111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Ulcerative colitis is a chronic inflammatory disease affecting the colon. During chronic inflammation of epithelial cells, lipid metabolism via pro-inflammatory eicosanoids is known to modify the immune response. METHODS Starting from the Mammalian Metabolic Database, the expression of metabolic enzymes was investigated in two independent cohorts from transcriptome datasets GSE38713 and GSE11223, which analyzed ulcerative colitis tissue samples from the digestive tract. RESULTS In the first cohort, 145 differentially expressed enzymes were identified as significantly regulated between ulcerative colitis tissues and normal controls. Overexpressed enzymes were selected to tune an Elastic Net model in the second cohort. Using the best parameters, the model achieved a prediction accuracy for ulcerative colitis with an area under the curve (AUC) of 0.79. Twenty-two metabolic enzymes were found to be commonly overexpressed in both independent cohorts, with decreasing Elastic Net predictive coefficients as follows: LIPG (3.98), PSAT1 (3.69), PGM3 (2.74), CD38 (2.28), BLVRA (1.99), CBR3 (1.94), NT5DC2 (1.76), PHGDH (1.71), GPX7 (1.58), CASP1 (1.56), ASRGL1 (1.4), SOD3 (1.25), CHST2 (0.965), CHST11 (0.95), KYNU (0.94), PLAG2G7 (0.92), SRM (0.87), PTGS2 (0.80), LPIN1 (0.47), ME1 (0.31), PTGDS (0.14), and ADA (0.13). Functional enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database highlighted the main implications of these enzymes in cysteine and methionine metabolism (adjusted p-value = 0.01), arachidonic acid and prostaglandin metabolism (adjusted p-value = 0.01), and carbon metabolism (adjusted p-value = 0.04). A metabolic score based on the transcriptional activation of the validated twenty-two enzymes was found to be significantly greater in Ulcerative colitis samples compared to healthy donor samples (p-value = 1.52 × 10-8). CONCLUSIONS A metabolic expression score was established and reflects the implications of heterogeneous metabolic pathway deregulations in the digestive tract of patients with ulcerative colitis.
Collapse
Affiliation(s)
- Christophe Desterke
- Faculté de Médecine du Kremlin Bicêtre, University Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
| | - Yuanji Fu
- INSERM, CNRS, Institut Necker Enfants Malades, Université Paris Cité, 75015 Paris, France;
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France;
| | - Jorge Mata-Garrido
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
6
|
Zhou S, Tao B, Guo Y, Gu J, Li H, Zou C, Tang S, Jiang S, Fu D, Li J. Integrating plasma protein-centric multi-omics to identify potential therapeutic targets for pancreatic cancer. J Transl Med 2024; 22:557. [PMID: 38858729 PMCID: PMC11165868 DOI: 10.1186/s12967-024-05363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Deciphering the role of plasma proteins in pancreatic cancer (PC) susceptibility can aid in identifying novel targets for diagnosis and treatment. METHODS We examined the relationship between genetically determined levels of plasma proteins and PC through a systemic proteome-wide Mendelian randomization (MR) analysis utilizing cis-pQTLs from multiple centers. Rigorous sensitivity analyses, colocalization, reverse MR, replications with varying instrumental variable selections and additional datasets, as well as subsequent meta-analysis, were utilized to confirm the robustness of significant findings. The causative effect of corresponding protein-coding genes' expression and their expression pattern in single-cell types were then investigated. Enrichment analysis, between-protein interaction and causation, knock-out mice models, and mediation analysis with established PC risk factors were applied to indicate the pathogenetic pathways. These candidate targets were ultimately prioritized upon druggability and potential side effects predicted by a phenome-wide MR. RESULTS Twenty-one PC-related circulating proteins were identified in the exploratory phase with no evidence for horizontal pleiotropy or reverse causation. Of these, 11 were confirmed in a meta-analysis integrating external validations. The causality at a transcription level was repeated for neutrophil elastase, hydroxyacylglutathione hydrolase, lipase member N, protein disulfide-isomerase A5, xyloside xylosyltransferase 1. The carbohydrate sulfotransferase 11 and histo-blood group ABO system transferase exhibited high-support genetic colocalization evidence and were found to affect PC carcinogenesis partially through modulating body mass index and type 2 diabetes, respectively. Approved drugs have been established for eight candidate targets, which could potentially be repurposed for PC therapies. The phenome-wide investigation revealed 12 proteins associated with 51 non-PC traits, and interference on protein disulfide-isomerase A5 and cystatin-D would increase the risk of other malignancies. CONCLUSIONS By employing comprehensive methodologies, this study demonstrated a genetic predisposition linking 21 circulating proteins to PC risk. Our findings shed new light on the PC etiology and highlighted potential targets as priorities for future efforts in early diagnosis and therapeutic strategies of PC.
Collapse
Affiliation(s)
- Siyu Zhou
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Baian Tao
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yujie Guo
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jichun Gu
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hengchao Li
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Caifeng Zou
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Sichong Tang
- School of Medicine, Fudan University, Shanghai, 200240, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Deliang Fu
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Ji Li
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
7
|
Hu W, Chen Y, Zhang L, Guo X, Wei X, Shao Y, Wang D, Wu B. Effect of CHST11, a novel biomarker, on the biological functionalities of clear cell renal cell carcinoma. Sci Rep 2024; 14:7704. [PMID: 38565604 PMCID: PMC10987617 DOI: 10.1038/s41598-024-58280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor, and the role of carbohydrate sulfotransferase 11 (CHST11) in this cancer remains unclear. Here, by using bioinformatics methods, we comprehensively analyzed the relationship between CHST11 and clinical significance, immune infiltration, functional enrichment, m6A methylation, and protein-protein interaction networks. We found that CHST11 expression was significantly higher in ccRCC samples than in normal tissues. Additionally, CHST11 levels correlated with the clinicopathological features of ccRCC patients and functioned as a prognostic factor for patient survival. Functional analysis revealed the involvement of CHST11 in metabolic pathways. Immune infiltration and m6A methylation analysis suggested the association of CHST11 with immune cell abundance in the tumor microenvironment and specific methylation patterns in ccRCC. The in vitro analysis of the clinical samples and ccRCC cell lines demonstrated that the overexpression of CHST11 promotes ccRCC cell proliferation, migration, and invasion, while its suppression has the opposite effect. Thus, CHST11 may play a remarkable role in the occurrence and progression of ccRCC. Functionally, CHST11 promotes the aggressiveness of ccRCC cells. These findings provide insights into the role of CHST11 in ccRCC progression.Registry and the Registration No. of the study/trial: No. 2021K034.
Collapse
Affiliation(s)
- Weijing Hu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yongquan Chen
- Department of Urology, Shanxi Coal Center Hospital, Taiyuan, 030001, Shanxi, China
| | - Lin Zhang
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoling Guo
- Geriatrics Department, Xi'an Central Hospital, Xi'an, 710003, China
| | - Xin Wei
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuan Shao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Dongwen Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, Guangdong, China
| | - Bo Wu
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
8
|
Ramesh V, Gollavilli PN, Pinna L, Siddiqui MA, Turtos AM, Napoli F, Antonelli Y, Leal‐Egaña A, Havelund JF, Jakobsen ST, Boiteux EL, Volante M, Færgeman NJ, Jensen ON, Siersbæk R, Somyajit K, Ceppi P. Propionate reinforces epithelial identity and reduces aggressiveness of lung carcinoma. EMBO Mol Med 2023; 15:e17836. [PMID: 37766669 PMCID: PMC10701619 DOI: 10.15252/emmm.202317836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) plays a central role in the development of cancer metastasis and resistance to chemotherapy. However, its pharmacological treatment remains challenging. Here, we used an EMT-focused integrative functional genomic approach and identified an inverse association between short-chain fatty acids (propionate and butanoate) and EMT in non-small cell lung cancer (NSCLC) patients. Remarkably, treatment with propionate in vitro reinforced the epithelial transcriptional program promoting cell-to-cell contact and cell adhesion, while reducing the aggressive and chemo-resistant EMT phenotype in lung cancer cell lines. Propionate treatment also decreased the metastatic potential and limited lymph node spread in both nude mice and a genetic NSCLC mouse model. Further analysis revealed that chromatin remodeling through H3K27 acetylation (mediated by p300) is the mechanism underlying the shift toward an epithelial state upon propionate treatment. The results suggest that propionate administration has therapeutic potential in reducing NSCLC aggressiveness and warrants further clinical testing.
Collapse
Affiliation(s)
- Vignesh Ramesh
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
- Interdisciplinary Centre for Clinical ResearchUniversity Hospital Erlangen, FAU‐Erlangen‐NurembergErlangenGermany
| | - Paradesi Naidu Gollavilli
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
- Interdisciplinary Centre for Clinical ResearchUniversity Hospital Erlangen, FAU‐Erlangen‐NurembergErlangenGermany
| | - Luisa Pinna
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | | | | | - Francesca Napoli
- Department of Oncology at San Luigi HospitalUniversity of TurinTurinItaly
| | - Yasmin Antonelli
- Institute for Molecular Systems Engineering and Advanced MaterialsHeidelberg UniversityHeidelbergGermany
| | - Aldo Leal‐Egaña
- Institute for Molecular Systems Engineering and Advanced MaterialsHeidelberg UniversityHeidelbergGermany
| | - Jesper Foged Havelund
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | | | - Elisa Le Boiteux
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Marco Volante
- Department of Oncology at San Luigi HospitalUniversity of TurinTurinItaly
| | - Nils Joakim Færgeman
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Rasmus Siersbæk
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Kumar Somyajit
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Paolo Ceppi
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
- Interdisciplinary Centre for Clinical ResearchUniversity Hospital Erlangen, FAU‐Erlangen‐NurembergErlangenGermany
| |
Collapse
|
9
|
Jia M, Dong T, Cheng Y, Rong F, Zhang J, Lv W, Zhen S, Jia X, Cong B, Wu Y, Cui H, Hao P. Ceruloplasmin is associated with the infiltration of immune cells and acts as a prognostic biomarker in patients suffering from glioma. Front Pharmacol 2023; 14:1249650. [PMID: 37637428 PMCID: PMC10450624 DOI: 10.3389/fphar.2023.1249650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Glioma is regarded as a prevalent form of cancer that affects the Central Nervous System (CNS), with an aggressive growth pattern and a low clinical cure rate. Despite the advancement of the treatment strategy of surgical resection, chemoradiotherapy and immunotherapy in the last decade, the clinical outcome is still grim, which is ascribed to the low immunogenicity and tumor microenvironment (TME) of glioma. The multifunctional molecule, called ceruloplasmin (CP) is involved in iron metabolism. Its expression pattern, prognostic significance, and association with the immune cells in gliomas have not been thoroughly investigated. Studies using a variety of databases, including Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and Gliovis, showed that the mRNA and protein expression levels of CP in patients suffering from glioma increased significantly with an increasing glioma grade. Kaplan-Meier (KM) curves and statistical tests highlighted a significant reduction in survival time of patients with elevated CP expression levels. According to Cox regression analysis, CP can be utilized as a stand-alone predictive biomarker in patients suffering from glioma. A significant association between CP expression and numerous immune-related pathways was found after analyzing the data using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Tumor Immune Estimation Resource (TIMER) and CIBERSORT analyses indicated a substantial correlation between the CP expression and infiltration of immunocytes in the TME. Additionally, immune checkpoints and CP expression in gliomas showed a favorable correlation. According to these results, patients with glioma have better prognoses and levels of tumor immune cell infiltration when their CP expression is low. As a result, CP could be used as a probable therapeutic target for gliomas and potentially anticipate the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Miaomiao Jia
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
- Postdoctoral Mobile Station of Biology, Hebei Medical University, Shijiazhuang, Hebei, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianyu Dong
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
| | - Yangyang Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fanghao Rong
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
| | - Jiamin Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
| | - Wei Lv
- Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuman Zhen
- Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xianxian Jia
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Cong
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuming Wu
- Hebei Collaborative Innovation Center for Cardio Cerebrovascular Disease, Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Peipei Hao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| |
Collapse
|
10
|
Kubo A, Matsubara K, Matsubara Y, Nakaoka H, Sugiyama T. The Influence of Nicotine on Trophoblast-Derived Exosomes in a Mouse Model of Pathogenic Preeclampsia. Int J Mol Sci 2023; 24:11126. [PMID: 37446304 DOI: 10.3390/ijms241311126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Preeclampsia (PE) is a serious complication of pregnancy with a pathogenesis that is not fully understood, though it involves the impaired invasion of extravillous trophoblasts (EVTs) into the decidual layer during implantation. Because the risk of PE is actually decreased by cigarette smoking, we considered the possibility that nicotine, a critical component of tobacco smoke, might protect against PE by modifying the content of exosomes from EVTs. We investigated the effects of nicotine on our PE model mouse and evaluated blood pressure. Next, exosomes were extracted from nicotine-treated extravillous trophoblasts (HTR-8/SVneo), and the peptide samples were evaluated by DIA (Data Independent Acquisition) proteomic analysis following nano LC-MS/MS. Hub proteins were identified using bioinformatic analysis. We found that nicotine significantly reduced blood pressure in a PE mouse model. Furthermore, we identified many proteins whose abundance in exosomes was modified by nicotine treatment of EVTs, and we used bioinformatic annotation and network analysis to select five key hub proteins with potential roles in the pathogenesis or prevention of PE. EVT-derived exosomes might influence the pathogenesis of PE because the cargo delivered by exosomes can signal to and modify the receiving cells and their environment.
Collapse
Affiliation(s)
- Ayane Kubo
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Keiichi Matsubara
- Department of Regional Pediatrics and Perinatology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Yuko Matsubara
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Hirotomo Nakaoka
- Advanced Research Support Center, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Takashi Sugiyama
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| |
Collapse
|
11
|
Chen Y, Dai X, Wang J, Tao C, Wang Y, Zhu Q, Wang Z, Zhang T, Lan Q, Zhao J. Heterogenous profiles between primary lung cancers and paired brain metastases reveal tumor evolution. Front Oncol 2023; 13:1026099. [PMID: 37384291 PMCID: PMC10293929 DOI: 10.3389/fonc.2023.1026099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Background Brain metastases (BMs) are the most common central nervous system (CNS) malignant tumors, with rapid disease progression and extremely poor prognosis. The heterogeneity between primary lung cancers and BMs leads to the divergent efficacy of the adjuvant therapy response to primary tumors and BMs. However, the extent of heterogeneity between primary lung cancers and BMs, and the evolutionary process remains little known. Methods To deeply insight into the extent of inter-tumor heterogeneity at a single-patient level and the process of these evolutions, we retrospectively analyzed a total of 26 tumor samples from 10 patients with matched primary lung cancers and BMs. One patient underwent four times brain metastatic lesion surgery with diverse locations and one operation for the primary lesion. The genomic and immune heterogeneity between primary lung cancers and BMs were evaluated by utilizing whole-exome sequencing (WESeq) and immunohistochemical analysis. Results In addition to inheriting genomic phenotype and molecular phenotype from the primary lung cancers, massive unique genomic phenotype and molecular phenotype were also observed in BMs, which revealed unimaginable complexity of tumor evolution and extensive heterogeneity among lesions at a single-patient level. By analysis of a multi-metastases case (Case 3) of cancer cells' subclonal composition, we found similar multiple subclonal clusters in the four spatial and temporal isolated brain metastatic focus, with the characteristics of polyclonal dissemination. Our study also verified that the expression level of immune checkpoints-related molecule Programmed Death-Ligand 1 (PD-L1) (P = 0.0002) and the density of tumor-infiltrating lymphocytes (TILs) (P = 0.0248) in BMs were significantly lower than that in paired primary lung cancers. Additionally, tumor microvascular density (MVD) also differed between primary tumors and paired BMs, indicating that temporal and spatial diversity profoundly contributes to the evolution of BMs heterogeneity. Conclusion Our study revealed the significance of temporal and spatial factors to the evolution of tumor heterogeneity by multi-dimensional analysis of matched primary lung cancers and BMs, which also provided novel insight for formulating individualized treatment strategies for BMs.
Collapse
Affiliation(s)
- Yanming Chen
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoxiao Dai
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ji Wang
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chuming Tao
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ye Wang
- Health Management Center, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing Zhu
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhongyong Wang
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tan Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing Lan
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jizong Zhao
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|