1
|
Bana S, Daffara S, Dagar A, Tiwari AK, Medhi K, Mukherjee S, Uttam V, Ansari MR, Tuli HS, Yadav V, Jain A. Clinical Significance of LINC00261 in the Pathogenesis of Pancreatic, Colorectal, Hepatocellular, and Gallbladder Cancer. Diseases 2025; 13:89. [PMID: 40136629 PMCID: PMC11941650 DOI: 10.3390/diseases13030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Pancreatic (PC), colorectal (CRC), hepatocellular (HCC), and gallbladder (GC) cancers together account for nearly 20% of all cancer cases. However, specific biomarkers and therapeutic targets for these cancers are lacking. Diagnosing these cancers early and providing timely, appropriate treatment to improve patient outcomes is crucial. In this context, previous studies, including ours, have highlighted the potential of non-coding RNAs, particularly long non-coding RNAs (lncRNAs), in diagnosing and prognosis of various cancers. This review focuses on the mechanistic role of the recently identified lncRNA LINC00261 in PC, CRC, HCC, and GC. Our comprehensive literature analysis revealed that LINC00261 functions as a tumor suppressor, and its reduced expression is associated with larger tumor size, advanced tumor-node-metastasis (TNM) stages, lymphatic metastasis, and poorer overall survival rates. Additionally, we discovered that LINC00261 acts as a molecular sponge for miRNAs, such as miR-550a-3p, miR-23a-3p, miR-148a, miR-324-3p, and miR-105-5p, regulating critical cancer-related signaling pathways, including PI3K/Akt/mTOR, Protein kinase B, and Mammalian target of rapamycin (mTOR). Further bioinformatic analysis revealed that LINC00261 regulates key cellular processes, such as protein-DNA complex formation, ribonuclease complex activity, histone deacetylase complexes, and nuclear matrix interactions. Overall, we believe that LINC00261 holds significant promise as a future biomarker and, when combined with existing treatment strategies, may enhance cancer patient care and survival.
Collapse
Affiliation(s)
- Sanjana Bana
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Sia Daffara
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Aastha Dagar
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Ashutosh Kumar Tiwari
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Kanupriya Medhi
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Sagarika Mukherjee
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Vivek Uttam
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Md Rizwan Ansari
- GD Research Center, 3rd Floor, Jyoti Pinnacle Building, Survey No.11, Kondapur Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500081, Telangana, India;
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India;
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, 20213 Malmö, Sweden
| | - Aklank Jain
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| |
Collapse
|
2
|
Xu G, Song X, Wang X, Xue R, Yan X, Qin L, Chang X, Gao J, Chen Z, Song G. Combined miR-181a-5p and Ag Nanoparticles are Effective Against Oral Cancer in a Mouse Model. Int J Nanomedicine 2024; 19:9227-9253. [PMID: 39267724 PMCID: PMC11390847 DOI: 10.2147/ijn.s458484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/20/2024] [Indexed: 09/15/2024] Open
Abstract
Purpose Oral squamous cell carcinoma is the most common type of malignant tumor in the head and neck region. Despite advancements, metastasis and recurrence rates remain high, and patient survival has not significantly improved. Although miRNA therapies are promising for cancer gene therapy, their applications in treating oral cancer are limited. Targeted medication delivery systems based on nanotechnology offer an efficient way to enhance oral cancer treatment efficacy. Methods We synthesized nanosilver (AgNPs) and loaded them with the tumor suppressor miR-181a-5p. In vitro experiments were conducted to investigate the inhibitory effects of AgNPs and their composites on the malignant behavior of oral cancer cell lines. The xenograft experiment was utilized to examine their effects on tumorigenesis and the potential molecular mechanisms involved. Results The nanosilver exhibited a spherical morphology with a size distribution ranging from 50 to 100 nm. They exhibited a distinct absorption peak at 330 nm and could be excited to emit green fluorescence. The biocompatible AgNPs effectively shielded miRNA from degradation by RNase and serum. The nanocomposites significantly inhibited the proliferation, invasion, migration, and colony formation of oral cancer cell lines. Notably, treatment with the nanocomposites resulted in substantial tumor growth suppression in the xenograft model. Mechanistically, these composites directly targeted BCL2 and exerted their antitumor effects by suppressing the β-catenin signaling pathway and other downstream genes without inducing acute toxicity. Conclusion Collectively, the findings demonstrate that the miR-181a-5p/AgNPs combination significantly impedes the growth and progression of oral cancer both in vitro and in vivo, highlighting a pivotal role for the β-catenin signaling pathway. This multifaceted approach holds promise as a prospective therapeutic strategy for oral cancer management in the future.
Collapse
Affiliation(s)
- Guoqiang Xu
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaona Song
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaotang Wang
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Rui Xue
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaoru Yan
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Litao Qin
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaoqi Chang
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
- School of Basic Medical Science, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jiping Gao
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Zhaoyang Chen
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Guohua Song
- Laboratory Animal Center Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
3
|
Liu D, Wang K, Wang J, Cao F, Tao L. Identification of the molecular link: STAT3 is a shared key gene linking postmenopausal osteoporosis and sarcopenia. Bone Joint Res 2024; 13:411-426. [PMID: 39195444 PMCID: PMC11352718 DOI: 10.1302/2046-3758.138.bjr-2023-0351.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Aims This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. Methods We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes. Results Signal transducer and activator of transcription 3 (STAT3) was notably expressed in both conditions. Single-cell analysis pinpointed specific cells with high STAT3 expression, and microRNA (miRNA)-125a-5p emerged as a potential regulator. Experiments confirmed the crucial role of STAT3 in osteoclast differentiation and muscle proliferation. Conclusion STAT3 has emerged as a key gene in both POMP and sarcopenia. This insight positions STAT3 as a potential common therapeutic target, possibly improving management strategies for these age-related diseases.
Collapse
Affiliation(s)
- Dian Liu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Ke Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Costa RF, de Oliveira CA, Gomes ÁNDM, Lourenço SV, Coutinho-Camillo CM. Molecular Aspects of Mucoepidermoid Carcinoma and Adenoid Cystic Carcinoma of the Salivary Gland. Head Neck Pathol 2024; 18:34. [PMID: 38658430 PMCID: PMC11043314 DOI: 10.1007/s12105-024-01629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/12/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Salivary gland tumors (SGTs) are rare and highly heterogeneous lesions, making diagnosis a challenging activity. In addition, the small number of studies and samples evaluated difficults the determination of prognosis and diagnosis. Despite the solid advances achieved by research, there is still an intense need to investigate biomarkers for diagnosis, prognosis and that explain the evolution and progression of SGTs. METHODS We performed a comprehensive literature review of the molecular alterations focusing on the most frequent malignant SGTs: mucoepidermoid carcinoma and adenoid cystic carcinoma. RESULTS Due to the importance of biomarkers in the tumorigenenic process, this review aimed to address the mechanisms involved and to describe molecular and biomarker pathways to better understand some aspects of the pathophysiology of salivary gland tumorigenesis. CONCLUSIONS Molecular analysis is essential not only to improve the diagnosis and prognosis of the tumors but also to identify novel driver pathways in the precision medicine scenario.
Collapse
Affiliation(s)
- Raisa Ferreira Costa
- International Research Center, A.C.Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil
| | - Carolinne Alves de Oliveira
- International Research Center, A.C.Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil
| | - Ágatha Nagli de Mello Gomes
- International Research Center, A.C.Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil
| | | | | |
Collapse
|
5
|
Das K, Paul S, Ghosh A, Gupta S, Mukherjee T, Shankar P, Sharma A, Keshava S, Chauhan SC, Kashyap VK, Parashar D. Extracellular Vesicles in Triple-Negative Breast Cancer: Immune Regulation, Biomarkers, and Immunotherapeutic Potential. Cancers (Basel) 2023; 15:4879. [PMID: 37835573 PMCID: PMC10571545 DOI: 10.3390/cancers15194879] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype accounting for ~10-20% of all human BC and is characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) amplification. Owing to its unique molecular profile and limited targeted therapies, TNBC treatment poses significant challenges. Unlike other BC subtypes, TNBC lacks specific molecular targets, rendering endocrine therapies and HER2-targeted treatments ineffective. The chemotherapeutic regimen is the predominant systemic treatment modality for TNBC in current clinical practice. However, the efficacy of chemotherapy in TNBC is variable, with response rates varying between a wide range of patients, and the emerging resistance further adds to the difficulties. Furthermore, TNBC exhibits a higher mutational burden and is acknowledged as the most immunogenic of all BC subtypes. Consequently, the application of immune checkpoint inhibition has been investigated in TNBC, yielding promising outcomes. Recent evidence identified extracellular vesicles (EVs) as an important contributor in the context of TNBC immunotherapy. In view of the extraordinary ability of EVs to transfer bioactive molecules, such as proteins, lipids, DNA, mRNAs, and small miRNAs, between the cells, EVs are considered a promising diagnostic biomarker and novel drug delivery system among the prospects for immunotherapy. The present review provides an in-depth understanding of how EVs influence TNBC progression, its immune regulation, and their contribution as a predictive biomarker for TNBC. The final part of the review focuses on the recent key advances in immunotherapeutic strategies for better understanding the complex interplay between EVs and the immune system in TNBC and further developing EV-based targeted immunotherapies.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700012, India; (S.P.); (A.G.)
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700012, India; (S.P.); (A.G.)
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, India;
| | - Tanmoy Mukherjee
- School of Medicine, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, Galveston, TX 77555, USA or
| | - Anshul Sharma
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.C.C.); (V.K.K.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Vivek Kumar Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.C.C.); (V.K.K.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Tang Y, Zhu Q, Yang L, Meng Y, Zhang G, Zhou T, Wang C, Song X, Su YX, Ye J. MiR-200b-5p inhibits tumor progression in salivary adenoid cystic carcinoma via targeting BTBD1. Cell Signal 2023:110748. [PMID: 37290676 DOI: 10.1016/j.cellsig.2023.110748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Salivary adenoid cystic carcinoma (SACC) is a rare malignant tumor of the salivary gland. Studies have suggested that miRNA may play a crucial role in the invasion and metastasis of SACC. This study aimed to investigate the role of miR-200b-5p in SACC progression. Reverse transcription-quantitative PCR and western blot assay were used to detect the expression levels of miR-200b-5p and BTBD1. The biological functions of miR-200b-5p were evaluated via wound-healing assays, transwell assays, and xenograft nude mice model. The interaction between miR-200b-5p and BTBD1 was assessed using luciferase assay. Results showed that miR-200b-5p was downregulated in the SACC tissues while BTBD1 was upregulated. miR-200b-5p overexpression suppressed SACC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Bioinformatics prediction and luciferase reporter assay revealed that miR-200b-5p could directly bind to BTBD1. Besides, miR-200b-5p overexpression could rescue the tumor-promoting effect of BTBD1. miR-200b-5p inhibited tumor progression by modulating EMT-related proteins, targeting BTBD1 and inhibiting PI3K/AKT signaling pathway. Overall, our findings indicate that miR-200b-5p can suppress SACC proliferation, migration, invasion, and EMT by regulating BTBD1 and PI3K/AKT axis, providing a promising therapeutic target for SACC treatment.
Collapse
Affiliation(s)
- Yuting Tang
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qinghai Zhu
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Yang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ying Meng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Gao Zhang
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China
| | - Tian Zhou
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chenxing Wang
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu-Xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, SAR, China.
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Disease, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
7
|
Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Salman A, Zaki MB, El-Mahdy HA, Ismail A, Elsakka EGE, Abd-Elmawla MA, El-Husseiny HM, Ibrahim WS, Doghish AS. The potential role of miRNAs in the pathogenesis of salivary gland cancer - A Focus on signaling pathways interplay. Pathol Res Pract 2023; 247:154584. [PMID: 37267724 DOI: 10.1016/j.prp.2023.154584] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Salivary gland cancer (SGC) is immensely heterogeneous, both in terms of its physical manifestation and its aggressiveness. Developing a novel diagnostic and prognostic detection method based on the noninvasive profiling of microribonucleic acids (miRs) could be a goal for the clinical management of these specific malignancies, sparing the patients' valuable time. miRs are promising candidates as prognostic biomarkers and therapeutic targets or factors that can advance the therapy of SGC due to their ability to posttranscriptionally regulate the expression of various genes involved in cell proliferation, differentiation, cell cycle, apoptosis, invasion, and angiogenesis. Depending on their biological function, many miRs may contribute to the development of SGC. Therefore, this article serves as an accelerated study guide for SGC and the biogenesis of miRs. Here, we shall list the miRs whose function in SGC pathogenesis has recently been determined with an emphasis on their potential applications as therapeutic targets. We will also offer a synopsis of the current state of knowledge about oncogenic and tumor suppressor miRs in relation to SGC.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Wael S Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|