1
|
Deng H, Xiao Q, Xu X, Zhang L, Zhang Y. Quercetin Inhibits Gastric Cancer Progression via FAM198B/MAPK Pathway Modulation. Pharmgenomics Pers Med 2025; 18:115-141. [PMID: 40390771 PMCID: PMC12087595 DOI: 10.2147/pgpm.s511324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/07/2025] [Indexed: 05/21/2025] Open
Abstract
Background The family with the sequence similarity 198 member B (FAM198B) has been found to contribute to the progression of gastric cancer (GC). However, the role and molecular mechanism of FAM198B in GC remains poorly understood. This work found a link between FAM198B and quercetin, and the regulatory effect of FAM198B on the MAPK pathway of GC. Methods FAM198B expression was identified through multiple public data sets and verified in clinical tissue samples. The associations between FAM198B and the prognosis of patients with GC were analyzed via the Kaplan‒Meier plotter and Cox regression analysis. Gene set enrichment analysis, coexpressed genes, and RNA sequencing were used to explore the related functions and signaling pathways of FAM198B in GC. In vitro assays assessed the effects of FAM198B knockdown on GC cells. FAM198B was found as a quercetin target by the HERB database and in vitro assays. Results FAM198B was highly expressed in tissues from GC patients (p<0.001) and was positively associated with poor prognosis (p<0.001) and immune cell infiltration in GC patients. FAM198B knockdown inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of GC cells (all p<0.05). In addition, FAM198B knockdown decreased the phosphorylation of p-Erk1/2 and p-p38 in GC cells (all p<0.01). Quercetin inhibited FAM198B expression and the phosphorylation of p-Erk1/2 and p-p38 in GC cells (all p<0.05). Conclusion Quercetin inhibits the proliferation, migration, invasion, and EMT of GC cells by inhibiting the FAM198B/MAPK signaling pathway. These discoveries lay the groundwork for developing the treatment of GC by quercetin and targeting FAM198B. In the future, more preclinical and clinical studies are needed to confirm the efficacy and safety of quercetin and target FAM198B in GC.
Collapse
Affiliation(s)
- Hongyang Deng
- Department of General Surgery, Hepatic-Biliary-Pancreatic Institute, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Qi Xiao
- Department of General Surgery, Hepatic-Biliary-Pancreatic Institute, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Xiaodong Xu
- Department of General Surgery, Hepatic-Biliary-Pancreatic Institute, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Lingyi Zhang
- Department of Liver Disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Youcheng Zhang
- Department of General Surgery, Hepatic-Biliary-Pancreatic Institute, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
2
|
Luo P, Gu Q, Wang J, Meng X, Zhao M. Developing an IPF Prognostic Model and Screening for Key Genes Based on Cold Exposure-Related Genes Using Bioinformatics Approaches. Biomedicines 2025; 13:690. [PMID: 40149666 PMCID: PMC11940207 DOI: 10.3390/biomedicines13030690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Cold exposure has an impact on various respiratory diseases. However, its relationship with idiopathic pulmonary fibrosis (IPF) remains to be elucidated. In this study, bioinformatics methods were utilized to explore the potential link between cold exposure and IPF. Methods: Cold exposure-related genes (CERGs) were identified using RNA-Seq data from mice exposed to cold versus room temperature conditions, along with cross-species orthologous gene conversion. Consensus clustering analysis was performed based on the CERGs. A prognostic model was established using univariate and multivariate risk analyses, as well as Lasso-Cox analysis. Differential analysis, WGCNA, and Lasso-Cox methods were employed to screen for signature genes. Results: This study identified 151 CERGs. Clustering analysis based on these CERGs revealed that IPF patients could be divided into two subgroups with differing severity levels. Significant differences were observed between these two subgroups in terms of hypoxia score, EMT score, GAP score, immune infiltration patterns, and mortality rates. A nine-gene prognostic model for IPF was established based on the CERG (AUC: 1 year: 0.81, 3 years: 0.79, 5 years: 0.91), which outperformed the GAP score (AUC: 1 year: 0.66, 3 years: 0.75, 5 years: 0.72) in prognostic accuracy. IPF patients were classified into high-risk and low-risk groups based on the RiskScore from the prognostic model, with significant differences observed between these groups in hypoxia score, EMT score, GAP score, immune infiltration patterns, and mortality rates. Ultimately, six high-risk signature genes associated with cold exposure in IPF were identified: GASK1B, HRK1, HTRA1, KCNN4, MMP9, and SPP1. Conclusions: This study suggests that cold exposure may be a potential environmental factor contributing to the progression of IPF. The prognostic model built upon cold exposure-related genes provides an effective tool for assessing the severity of IPF patients. Meanwhile, GASK1B, HRK1, HTRA1, KCNN4, MMP9, and SPP1 hold promise as potential biomarkers and therapeutic targets for IPF.
Collapse
Affiliation(s)
- Peiyao Luo
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin 150001, China
| | - Quankuan Gu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin 150001, China
| | - Jianpeng Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin 150001, China
| | - Xianglin Meng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin 150001, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, No. 2075, Qunli Seventh Avenue, Daoli District, Harbin 150001, China
| |
Collapse
|
3
|
Wu L, Liu C, Hu W. Comprehensive investigation of matrix metalloproteinases in skin cutaneous melanoma: diagnostic, prognostic, and therapeutic insights. Sci Rep 2025; 15:2152. [PMID: 39820824 PMCID: PMC11739484 DOI: 10.1038/s41598-025-85887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
The dysregulation of matrix metalloproteinases (MMPs) in skin cutaneous melanoma (SKCM) represents a critical aspect of tumorigenesis. In this study, we investigated the diagnostic, prognostic, and therapeutic aspects of the MMPs in SKCM. Thirteen SKCM cell lines and seven normal skin cell lines were cultured under standard conditions for experimental analyses. RNA and DNA were extracted, followed by RT-qPCR to assess MMP expression and promoter methylation analysis to determine methylation levels. Functional assays, including cell proliferation, colony formation, and wound healing, were conducted post-MMP7 knockdown using siRNA in A375 cells. Databases like GEPIA2, HPA, MEXPRESS, and miRNet were employed for expression, survival, methylation, and miRNA-mRNA network analyses. We investigated the expression and promoter methylation landscape of MMPs in SKCM cell lines, revealing significant (p-value < 0.05) up-regulation of MMP1, MMP7, MMP9, MMP10, MMP11, MMP12, MMP13, MMP14, and MMP25, alongside down-regulation of MMP2, MMP3, and MMP21. Furthermore, our analysis demonstrated a significant (p-value < 0.05) inverse correlation between MMP expression levels and promoter methylation status, suggesting a potential regulatory role of DNA methylation in MMP dysregulation. Notably, MMP7, MMP11, and MMP14 exhibited significant (p-value < 0.05) associations with the overall survival of SKCM patients, emphasizing their prognostic significance. Additionally, Receiver operating characteristic (ROC) curve analysis highlighted the significant (p-value < 0.05) diagnostic potential of MMP7, MMP11, and MMP14 in distinguishing SKCM from normal individuals. Subsequent validation across multiple cohorts confirmed significant (p-value < 0.05) elevated MMP expression levels in SKCM tissues, particularly in advanced disease stages, further emphasizing their role in tumor progression. Furthermore, we elucidated potential regulatory pathways involving miR-22-3p, which targets MMP7, MMP11, and MMP14 genes in SKCM. Our findings also revealed associations between MMP expression and immune modulation, drug sensitivity, and functional states of SKCM cells. Lastly, MMP7 knockdown in A375 cells significantly significant (p-value < 0.05) impacted several characteristics, including cell proliferation, colony formation, and wound healing. Our findings highlight the diagnostic, prognostic, and therapeutic potential of MMP7, MMP11, and MMP14 in SKCM. These MMPs could serve as biomarkers for early detection and targets for therapy. Future efforts should focus on preclinical and clinical validation to translate these insights into personalized diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lingxia Wu
- Dermatology, Changzhi Second People's Hospital, Changzhi, 046000, Shanxi, China
| | - Chenxiaoxiao Liu
- The First Clinical Institute, Zunyi Medical University, Zunyi, 520300, Guizhou, China
| | - Weicai Hu
- Dermatology, Changzhi Second People's Hospital, Changzhi, 046000, Shanxi, China.
| |
Collapse
|
4
|
El Fil S, Uwishema O, Rizwan Ahmed A, Ratnani T, Rupani A, Mshaymesh S. Immunotherapy in gastrointestinal cancers: current strategies and future directions - a literature review. Ann Med Surg (Lond) 2025; 87:151-160. [PMID: 40109582 PMCID: PMC11918700 DOI: 10.1097/ms9.0000000000002757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/05/2024] [Indexed: 03/22/2025] Open
Abstract
Introduction The National Cancer Institute defines the disease of "cancer" as a group of disorders in which aberrant cells proliferate uncontrollably and have the potential to infiltrate neighboring tissues. It is well established that cancer remains a significant etiology contributing to worldwide mortality. Gastrointestinal (GI) neoplasms are a type of cancer that affects the digestive system and adds to the total cancer burden. Conventionally, several therapies have been employed, such as radiation and chemotherapy; nevertheless, their adverse effects have prompted the need for an improved therapeutic alternative. Immunotherapy thus became a notable medium of treatment for several malignancies, including tumors of the GI tract. Aim This comprehensive review seeks to provide insight on future directions and prospective therapies under development, as well as information regarding the present strategies utilized to mitigate one of the primary forms of cancer, GI cancer. Methods A detailed analysis of the existing literature on GI cancers has been conducted. Several databases were employed to gather this information, mainly PubMed/MEDLINE. Different aspects of the disease were considered when searching the databases to provide a comprehensive review of the current and future strategies being incorporated to mitigate the negative consequences of this disease. Results Many strategies are being used currently, and some are still under development. These comprise the usage of immune checkpoint inhibitors (ICIs), cytokine therapy, cancer vaccines, oncolytic viruses, and adoptive cell therapy. For instance, various monoclonal antibodies have been developed to inhibit the immunomodulatory effects of programmed death-1 and programmed death-1 ligand. There are also results of several clinical trials showing significant benefits and many changes are introduced to make the best of these strategies and minimize the challenges to group sizes. These challenges include overcoming the tumor's immunosuppressive environment, finding suitable predictive biomarkers, and reducing the adverse effects. Additionally, several novel immunotherapeutic approaches, such as chimeric antigen receptor T-cell (CAR-T) therapy, are being studied. In 2017, the US FDA approved the use of two CAR-T therapies, which marks a major milestone following extensive research and clinical trials. New approaches such as toll-like receptor-directed and helminth-based immunotherapies are being developed for the treatment of GI cancers as well. These therapies, along with targeted treatments, represent the future of immunotherapy in GI cancers. Conclusion Immunotherapy plays a significant role in the different types of GI cancers. However, optimizing these treatments will require overcoming barriers such as immune resistance, minimizing side effects, and improving the selection of patients through biomarkers. Continued research into these novel therapies and the mechanisms of immune modulation will be key to maximizing the therapeutic benefits of immunotherapy in the future.
Collapse
Affiliation(s)
- Serene El Fil
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Olivier Uwishema
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
| | - Aisha Rizwan Ahmed
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Jinnah Medical and Dental College, Karachi, Pakistan
| | - Tanya Ratnani
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Ameen Rupani
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- International Higher School of Medicine, Bishkek, Kyrgyzstan
| | - Sarah Mshaymesh
- Department of Research and Education, Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Division of Natural Sciences, Faculty of Sciences, Haigazian University, Beirut, Lebanon
| |
Collapse
|
5
|
Liu Q, Zhou X, Liu K, Wang Y, Liu C, Gao C, Cai Q, Sun C. Exploring risk factors for autoimmune diseases complicated by non-hodgkin lymphoma through regulatory T cell immune-related traits: a Mendelian randomization study. Front Immunol 2024; 15:1374938. [PMID: 38863695 PMCID: PMC11165099 DOI: 10.3389/fimmu.2024.1374938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Background The effect of immune cells on autoimmune diseases (ADs) complicated by non-Hodgkin lymphoma (NHL) has been widely recognized, but a causal relationship between regulatory T cell (Treg) immune traits and ADs complicated by NHL remains debated. Methods Aggregate data for 84 Treg-related immune traits were downloaded from the Genome-Wide Association Study (GWAS) catalog, and GWAS data for diffuse large B-cell lymphoma (DLBCL; n=315243), follicular lymphoma (FL; n=325831), sjögren's syndrome (SS; n=402090), rheumatoid arthritis (RA; n=276465), dermatopolymyositis (DM; n=311640), psoriasis (n=407876), atopic dermatitis (AD; n=382254), ulcerative colitis (UC; n=411317), crohn's disease(CD; n=411973) and systemic lupus erythematosus (SLE; n=307587) were downloaded from the FinnGen database. The inverse variance weighting (IVW) method was mainly used to infer any causal association between Treg-related immune traits and DLBCL, FL, SS, DM, RA, Psoriasis, AD, UC, CD and SLE, supplemented by MR-Egger, weighted median, simple mode, and weighted mode. Moreover, we performed sensitivity analyses to assess the validity of the causal relationships. Results There was a potential genetic predisposition association identified between CD39+ CD8br AC, CD39+ CD8br % T cell, and the risk of DLBCL (OR=1.51, p<0.001; OR=1.25, p=0.001) (adjusted FDR<0.1). Genetic prediction revealed potential associations between CD25++ CD8br AC, CD28- CD25++ CD8br % T cell, CD39+ CD8br % CD8br, and the risk of FL (OR=1.13, p=0.022; OR=1.28, p=0.042; OR=0.90, p=0.016) (adjusted FDR>0.1). Furthermore, SLE and CD exhibited a genetically predicted potential association with the CD39+ CD8+ Tregs subset. SS and DM were possibly associated with an increase in the quantity of the CD4+ Tregs subset; RA may have reduced the quantity of the CD39+ CD8+ Tregs subset, although no causal relationship was identified. Sensitivity analyses supported the robustness of our findings. Conclusions There existed a genetically predicted potential association between the CD39+ CD8+ Tregs subset and the risk of DLBCL, while SLE and CD were genetically predicted to be potentially associated with the CD39+ CD8+ Tregs subset. The CD39+ CD8+ Tregs subset potentially aided in the clinical diagnosis and treatment of SLE or CD complicated by DLBCL.
Collapse
Affiliation(s)
- Qi Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintong Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunjing Liu
- School of Traditional Chinese Medicine Department, Beijing University of Chinese Medicine, Beijing, China
| | - Yimin Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Qingqing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
6
|
González-Arriagada WA, Canedo-Marroquin G, Adorno-Farías D, Fernández-Ramires R. New insights into the role of the oral leukoplakia microenvironment in malignant transformation. FRONTIERS IN ORAL HEALTH 2024; 5:1363052. [PMID: 38450102 PMCID: PMC10914962 DOI: 10.3389/froh.2024.1363052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Oral leukoplakia is the most frequent and potentially malignant lesion of the oral cavity. Although dysplasia grading remains the main factor for risk assessment, challenges persist in determining the exact risk of transformation, and the literature has focused on studying alternative biomarkers. The interaction between dysplastic epithelial cells and the microenvironment starts early, and the communication is mainly mediated by lymphocytes, inflammatory factors, fibroblasts, and the extracellular matrix, leading to dysplastic progression. Leukoplakia-infiltrating leukocytes (LILs) and leukoplakia-associated fibroblasts (LAFs) play crucial roles in the dysplastic microenvironment. The immune response is related to intraepithelial T lymphocyte infiltration, mechanisms of immunosuppression coordinated by regulatory T cells, M2 macrophage polarization, and increased numbers of Langerhans cells; in contrast, fibroblastic and extracellular matrix factors are associated with increased numbers of pro-tumorigenic myofibroblasts, increased expression of metalloproteinases vs. decreased expression of TIMPs, and increased expression of chemokines and other inflammatory mediators. The microenvironment offers insights into the progression of leukoplakia to carcinoma, and understanding the complexity of the oral microenvironment in potentially malignant diseases aids in determining the risk of malignant transformation and proposing new therapeutic alternatives.
Collapse
Affiliation(s)
- Wilfredo Alejandro González-Arriagada
- Facultad de Odontología, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago, Chile
| | - Gisela Canedo-Marroquin
- Facultad de Odontología, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Daniela Adorno-Farías
- School of Dentistry, Oral Medicine and Pathology Department, Universidad de Chile, Santiago, Chile
| | - Ricardo Fernández-Ramires
- Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
- Grupo Chileno de Cáncer Hereditario, Universidad de los Andes, Santiago, Chile
| |
Collapse
|