1
|
Ashrafi E, Radisic M, Elliott JAW. Systematic cryopreservation study of cardiac myoblasts in suspension. PLoS One 2024; 19:e0295131. [PMID: 38446773 PMCID: PMC10917286 DOI: 10.1371/journal.pone.0295131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/15/2023] [Indexed: 03/08/2024] Open
Abstract
H9c2 myoblasts are a cell line derived from embryonic rat heart tissue and demonstrate the ability to differentiate to cardiac myotubes upon reduction of the serum concentration (from 10% to 1%) and addition of all-trans retinoic acid in the growth medium. H9c2 cells are increasingly being used as an easy-to-culture proxy for some functions of cardiomyocytes. The cryobiology of cardiac cells including H9c2 myoblasts has not been studied as extensively as that of some cell types. Consequently, it is important to characterize the cryobiological response and systematically develop well-optimized cryopreservation protocols for H9c2 cells to have optimal and consistent viability and functionality after thaw for high quality studies with this cell type. In this work, an interrupted slow cooling protocol (graded freezing) was applied to characterize H9c2 response throughout the cooling profile. Important factors that affect the cell response were examined, and final protocols that provided the highest post-thaw viability are reported. One protocol uses the common cryoprotectant dimethyl sulfoxide combined with hydroxyethyl starch, which will be suitable for applications in which the presence of dimethyl sulfoxide is not an issue; and the other protocol uses glycerol as a substitute when there is a desire to avoid dimethyl sulfoxide. Both protocols achieved comparable post-thaw viabilities (higher than 80%) based on SYTO 13/GelRed flow cytometry results. H9c2 cells cryopreserved by either protocol showed ability to differentiate to cardiac myotubes comparable to fresh (unfrozen) H9c2 cells, and their differentiation to cardiac myotubes was confirmed with i) change in cell morphology, ii) expression of cardiac marker troponin I, and iii) increase in mitochondrial mass.
Collapse
Affiliation(s)
- Elham Ashrafi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Janet A. W. Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Biobanks-A Platform for Scientific and Biomedical Research. Diagnostics (Basel) 2020; 10:diagnostics10070485. [PMID: 32708805 PMCID: PMC7400532 DOI: 10.3390/diagnostics10070485] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
The development of biomedical science requires the creation of biological material collections that allow for the search and discovery of biomarkers for pathological conditions, the identification of new therapeutic targets, and the validation of these findings in samples from patients and healthy people. Over the past decades, the importance and need for biobanks have increased considerably. Large national and international biorepositories have replaced small collections of biological samples. The aim of this work is to provide a basic understanding of biobanks and an overview of how biobanks have become essential structures in modern biomedical research.
Collapse
|
3
|
Rawal S, Harrington S, Williams SJ, Ramachandran K, Stehno-Bittel L. Long-term cryopreservation of reaggregated pancreatic islets resulting in successful transplantation in rats. Cryobiology 2017; 76:41-50. [PMID: 28483491 DOI: 10.1016/j.cryobiol.2017.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/14/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023]
Abstract
Preservation of pancreatic islets for long-term storage of islets used for transplantation or research has long been a goal. Unfortunately, few studies on long-term islet cryopreservation (1 month and longer) have reported positive outcomes in terms of islet yield, survival and function. In general, single cells have been shown to tolerate the cryopreservation procedure better than tissues/multicellular structures like islets. Thus, we optimized a method to cryopreserve single islet cells and, after thawing, reaggregated them into islet spheroids. Cryopreserved (CP) single human islet cells formed spheroids efficiently within 3-5 days after thawing. Approximately 79% of islet cells were recovered following the single-cell cryopreservation protocol. Viability after long-term cryopreservation (4 weeks or more) was significantly higher in the CP islet cell spheroids (97.4 ± 0.4%) compared to CP native islets (14.6 ± 0.4%). Moreover, CP islet cell spheroids had excellent viability even after weeks in culture (88.5 ± 1.6%). Metabolic activity was 4-5 times higher in CP islet cell spheroids than CP native islets at 24 and 48 h after thawing. Diabetic rats transplanted with CP islet cell spheroids were normoglycemic for 10 months, identical to diabetic rats transplanted with fresh islets. However, the animals receiving fresh islets required a higher volume of transplanted tissue to achieve normoglycemia compared to those transplanted with CP islet cell spheroids. By cryopreserving single cells instead of intact islets, we achieved highly viable and functional islets after thawing that required lower tissue volumes to reverse diabetes in rats.
Collapse
Affiliation(s)
- Sonia Rawal
- University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Stephen Harrington
- Likarda, LLC, 2002 W 39th Avenue, Kansas City, KS 66103, USA; University of Kansas, 1450 Jayhawk Blvd, Lawrence, KS 66045, USA
| | - S Janette Williams
- University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA; Likarda, LLC, 2002 W 39th Avenue, Kansas City, KS 66103, USA
| | | | - Lisa Stehno-Bittel
- University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA; Likarda, LLC, 2002 W 39th Avenue, Kansas City, KS 66103, USA.
| |
Collapse
|
4
|
Naaldijk Y, Johnson AA, Friedrich-Stöckigt A, Stolzing A. Cryopreservation of dermal fibroblasts and keratinocytes in hydroxyethyl starch-based cryoprotectants. BMC Biotechnol 2016; 16:85. [PMID: 27903244 PMCID: PMC5131400 DOI: 10.1186/s12896-016-0315-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/23/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Preservation of human skin fibroblasts and keratinocytes is essential for the creation of skin tissue banks. For successful cryopreservation of cells, selection of an appropriate cryoprotectant agent (CPA) is imperative. The aim of this study was to identify CPAs that minimize toxic effects and allow for the preservation of human fibroblasts and keratinocytes in suspension and in monolayers. RESULTS We cryopreserved human fibroblasts and keratinocytes with different CPAs and compared them to fresh, unfrozen cells. Cells were frozen in the presence and absence of hydroxyethyl starch (HES) or dimethyl sulfoxide (DMSO), the latter of which is a commonly used CPA known to exert toxic effects on cells. Cell numbers were counted immediately post-thaw as well as three days after thawing. Cellular structures were analyzed and counted by labeling nuclei, mitochondria, and actin filaments. We found that successful cryopreservation of suspended or adherent keratinocytes can be accomplished with a 10% HES or a 5% HES, 5% DMSO solution. Cell viability of fibroblasts cryopreserved in suspension was maintained with 10% HES or 5% HES, 5% DMSO solutions. Adherent, cryopreserved fibroblasts were successfully maintained with a 5% HES, 5% DMSO solution. CONCLUSION We conclude that skin tissue cells can be effectively cryopreserved by substituting all or a portion of DMSO with HES. Given that DMSO is the most commonly used CPA and is believed to be more toxic than HES, these findings are of clinical significance for tissue-based replacement therapies. Therapies that require the use of keratinocyte and fibroblast cells, such as those aimed at treating skin wounds or skin burns, may be optimized by substituting a portion or all of DMSO with HES during cryopreservation protocols.
Collapse
Affiliation(s)
- Yahaira Naaldijk
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,Interdisciplinary Institute for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Adiv A Johnson
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, USA
| | | | - Alexandra Stolzing
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany. .,Interdisciplinary Institute for Bioinformatics, University of Leipzig, Leipzig, Germany. .,Centre for Biological Engineering, Wolfson School of Material and Manufacturing Engineering, Loughborough University, Loughborough, UK.
| |
Collapse
|
5
|
Improved Cryopreservation of Human Umbilical Vein Endothelial Cells: A Systematic Approach. Sci Rep 2016; 6:34393. [PMID: 27708349 PMCID: PMC5052637 DOI: 10.1038/srep34393] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022] Open
Abstract
Cryopreservation of human umbilical vein endothelial cells (HUVECs) facilitated their commercial availability for use in vascular biology, tissue engineering and drug delivery research; however, the key variables in HUVEC cryopreservation have not been comprehensively studied. HUVECs are typically cryopreserved by cooling at 1 °C/min in the presence of 10% dimethyl sulfoxide (DMSO). We applied interrupted slow cooling (graded freezing) and interrupted rapid cooling with a hold time (two-step freezing) to identify where in the cooling process cryoinjury to HUVECs occurs. We found that linear cooling at 1 °C/min resulted in higher membrane integrities than linear cooling at 0.2 °C/min or nonlinear two-step freezing. DMSO addition procedures and compositions were also investigated. By combining hydroxyethyl starch with DMSO, HUVEC viability after cryopreservation was improved compared to measured viabilities of commercially available cryopreserved HUVECs and viabilities for HUVEC cryopreservation studies reported in the literature. Furthermore, HUVECs cryopreserved using our improved procedure showed high tube forming capability in a post-thaw angiogenesis assay, a standard indicator of endothelial cell function. As well as presenting superior cryopreservation procedures for HUVECs, the methods developed here can serve as a model to optimize the cryopreservation of other cells.
Collapse
|
6
|
Orellana MD, De Santis GC, Abraham KJ, Fontes AM, Magalhães DAR, Oliveira VDC, Costa EDBO, Palma PVB, Covas DT. Efficient recovery of undifferentiated human embryonic stem cell cryopreserved with hydroxyethyl starch, dimethyl sulphoxide and serum replacement. Cryobiology 2015; 71:151-60. [PMID: 25641609 DOI: 10.1016/j.cryobiol.2015.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND The therapeutic use of human embryonic stem cells (hESCs) is dependent on an efficient cryopreservation protocol for long-term storage. The aim of this study was to determine whether the combination of three cryoprotecting reagents using two freezing systems might improve hESC recovery rates with maintenance of hESC pluripotency properties for potential cell therapy application. METHODS Recovery rates of hESC colonies which were frozen in three cryoprotective solutions: Me2SO/HES/SR medium, Defined-medium® and Me2SO/SFB in medium solution were evaluated in ultra-slow programmable freezing system (USPF) and a slow-rate freezing system (SRF). The hESC pluripotency properties after freezing-thawing were evaluated. RESULTS We estimated the distribution frequency of survival colonies and observed that independent of the freezing system used (USPF or SRF) the best results were obtained with Me2SO/HES/SR as cryopreservation medium. We showed a significant hESC recovery colonies rate after thawing in Me2SO/HES/SR medium were 3.88 and 2.9 in USPF and SRF, respectively. The recovery colonies rate with Defined-medium® were 1.05 and 1.07 however in classical Me2SO medium were 0.5 and 0.86 in USPF and SRF, respectively. We showed significant difference between Me2SO/HES/SR medium×Defined-medium® and between Me2SO/HES/SR medium×Me2SO medium, for two cryopreservation systems (P<0.05). CONCLUSION We developed an in house protocol using the combination of Me2SO/HES/SR medium and ultra-slow programmable freezing system which resulted in hESC colonies that remain undifferentiated, maintain their in vitro and in vivo pluripotency properties and genetic stability. This approach may be suitable for cell therapy studies.
Collapse
Affiliation(s)
- Maristela Delgado Orellana
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Brazil; Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| | - Gil Cunha De Santis
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | | | | | | | - Viviane de Cássia Oliveira
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | - Dimas Tadeu Covas
- Hemotherapy Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Brazil; Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil
| |
Collapse
|
7
|
Stolzing A, Naaldijk Y, Fedorova V, Sethe S. Hydroxyethylstarch in cryopreservation - mechanisms, benefits and problems. Transfus Apher Sci 2012; 46:137-47. [PMID: 22349548 DOI: 10.1016/j.transci.2012.01.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/19/2011] [Accepted: 01/23/2012] [Indexed: 12/20/2022]
Abstract
As the progress of regenerative medicine places ever greater attention on cryopreservation of (stem) cells, tried and tested cryopreservation solutions deserve a second look. This article discusses the use of hydroxyethyl starch (HES) as a cryoprotectant. Charting carefully the recorded uses of HES as a cryoprotectant, in parallel to its further clinical use, indicates that some HES subtypes are a useful supplement to dimethysulfoxide (DMSO) in cryopreservation. However, we suggest that the most common admixture ratio of HES and DMSO in cryoprotectant solutions has been established by historical happenstance and requires further investigation and optimization.
Collapse
Affiliation(s)
- A Stolzing
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| | | | | | | |
Collapse
|