1
|
van Valkengoed DW, Hirasawa M, Rottschäfer V, de Lange ECM. Reliability of in vitro data for the mechanistic prediction of brain extracellular fluid pharmacokinetics of P-glycoprotein substrates in vivo; are we scaling correctly? J Pharmacokinet Pharmacodyn 2025; 52:16. [PMID: 39921770 PMCID: PMC11807079 DOI: 10.1007/s10928-025-09963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/16/2025] [Indexed: 02/10/2025]
Abstract
Plasma pharmacokinetic (PK) profiles often do not resemble the PK within the central nervous system (CNS) because of blood-brain-border (BBB) processes, like active efflux by P-glycoprotein (P-gp). Methods to predict CNS-PK are therefore desired. Here we investigate whether in vitro apparent permeability (Papp) and corrected efflux ratio (ERc) extracted from literature can be repurposed as input for the LeiCNS-PK3.4 physiologically-based PK model to confidently predict rat brain extracellular fluid (ECF) PK of P-gp substrates. Literature values of in vitro Caco-2, LLC-PK1-mdr1a/MDR1, and MDCKII-MDR1 cell line transport data were used to calculate P-gp efflux clearance (CLPgp). Subsequently, CLPgp was scaled from in vitro to in vivo through a relative expression factor (REF) based on P-gp expression differences. BrainECF PK was predicted well (within twofold error of the observed data) for 2 out of 4 P-gp substrates after short infusions and 3 out of 4 P-gp substrates after continuous infusions. Variability of in vitro parameters impacted both predicted rate and extent of drug distribution, reducing model applicability. Notably, use of transport data and in vitro P-gp expression obtained from a single study did not guarantee an accurate prediction; it often resulted in worse predictions than when using in vitro expression values reported by other labs. Overall, LeiCNS-PK3.4 shows promise in predicting brainECF PK, but this study highlights that the in vitro to in vivo translation is not yet robust. We conclude that more information is needed about context and drug dependency of in vitro data for robust brainECF PK predictions.
Collapse
Affiliation(s)
- Daan W van Valkengoed
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Makoto Hirasawa
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
2
|
Nicolas JM, de Lange ECM. Mind the Gaps: Ontogeny of Human Brain P-gp and Its Impact on Drug Toxicity. AAPS JOURNAL 2019; 21:67. [PMID: 31140038 DOI: 10.1208/s12248-019-0340-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
Available data on human brain P-glycoprotein ontogeny during infancy and childhood are limited. This review discusses the current body of data relating to maturation of human brain P-glycoprotein including transporter expression levels in post-mortem human brain samples, in vivo transporter activity using probe substrates, surrogate marker endpoints, and extrapolations from animal models. Overall, the data tend to confirm that human brain P-glycoprotein activity keeps developing after birth, although with a developmental time frame that remains unclear. This knowledge gap is a concern given the critical role of brain P-glycoprotein in drug safety and efficacy, and the vulnerable nature of the pediatric population. Future research could include the measurement of brain P-glycoprotein activity across age groups using positron emission tomography or central pharmacodynamic responses. For now, caution is advised when extrapolating adult data to children aged younger than 2 years for drugs with P-glycoprotein-dependent central nervous system activity.
Collapse
Affiliation(s)
- Jean-Marie Nicolas
- Quantitative Pharmacology DMPK Department, UCB BioPharma, Chemin du Foriest, 1420, Braine L'Alleud, Belgium.
| | - Elizabeth C M de Lange
- Research Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Bossennec M, Di Roio A, Caux C, Ménétrier-Caux C. MDR1 in immunity: friend or foe? Oncoimmunology 2018; 7:e1499388. [PMID: 30524890 PMCID: PMC6279327 DOI: 10.1080/2162402x.2018.1499388] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/08/2018] [Indexed: 02/09/2023] Open
Abstract
MDR1 is an ATP-dependent transmembrane transporter primarily studied for its role in the detoxification of tissues and for its implication in resistance of tumor cells to chemotherapy treatment. Several studies also report on its expression on immune cells where it plays a protective role from xenobiotics and toxins. This review provides an overview of what is known on MDR1 expression in immune cells in human, and its implications in different pathologies and their treatment options.
Collapse
Affiliation(s)
- Marion Bossennec
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| | - Anthony Di Roio
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| | - Christophe Caux
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| | - Christine Ménétrier-Caux
- Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), Univ Lyon, Université Claude Bernard Lyon 1, Lyon France.,Immunology Virology Inflammation (IVI) department, Team "Therapeutic targeting of the tumor cells and their immune stroma", Lyon, France
| |
Collapse
|
4
|
Reddig A, Lorenz S, Hiemann R, Guttek K, Hartig R, Heiserich L, Eberle C, Peters V, Schierack P, Sack U, Roggenbuck D, Reinhold D. Assessment of modulated cytostatic drug resistance by automated γH2AX analysis. Cytometry A 2015; 87:724-32. [DOI: 10.1002/cyto.a.22667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Annika Reddig
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg; Magdeburg Germany
| | | | - Rico Hiemann
- Faculty of Natural Sciences; Brandenburg University of Technology Cottbus-Senftenberg; Senftenberg Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg; Magdeburg Germany
| | - Roland Hartig
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg; Magdeburg Germany
| | | | | | | | - Peter Schierack
- Faculty of Natural Sciences; Brandenburg University of Technology Cottbus-Senftenberg; Senftenberg Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig; Leipzig Germany
| | - Dirk Roggenbuck
- Medipan GmbH; Dahlewitz/Berlin Germany
- Faculty of Natural Sciences; Brandenburg University of Technology Cottbus-Senftenberg; Senftenberg Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg; Magdeburg Germany
| |
Collapse
|
5
|
Liptrott NJ, Owen A. The role of cytokines in the regulation of drug disposition: extended functional pleiotropism? Expert Opin Drug Metab Toxicol 2011; 7:341-52. [PMID: 21299442 DOI: 10.1517/17425255.2011.553600] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Drug disposition, metabolism and drug-drug interactions are important considerations for most drugs. Cytokines are integral to the successful resolution of many diseases. Data are emerging on a role for cytokines in regulation of the expression and activity of drug transporters and drug metabolising enzymes. Investigation of the interaction between pharmacological and immunological responses is key to understanding the complex relationships involved in patient response to therapy. AREAS COVERED Evidence detailing the ability of cytokines to regulate drug disposition and metabolism is reviewed in the context of different cell and tissue types. The literature search undertaken provides an overview of the current understanding of the interrelationship between pharmacological and immunological factors which may influence successful drug therapy. EXPERT OPINION Dysregulation of cytokines and cytokine networks is a hallmark of a number of diseases such as HIV and cancer. The mechanisms by which the immune system can influence drug disposition are relatively understudied but recent work has highlighted the necessity for examining its impact on pharmacokinetics and pharmacodynamics. A more comprehensive approach in clinical studies will allow better determination of the impact of cytokines on drug disposition. In addition, determining the mechanisms that underpin the differential effects of cytokines across different cell types will clarify the responses reported in these studies.
Collapse
Affiliation(s)
- Neill James Liptrott
- NIHR Biomedical Research Centre for Microbial Disease, Royal Liverpool & Broadgreen University Hospitals Trust, Liverpool, UK
| | | |
Collapse
|
6
|
Giraud C, Manceau S, Treluyer JM. ABC transporters in human lymphocytes: expression, activity and role, modulating factors and consequences for antiretroviral therapies. Expert Opin Drug Metab Toxicol 2010; 6:571-89. [PMID: 20367109 DOI: 10.1517/17425251003601953] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPORTANCE OF THE FIELD ATP-binding cassette (ABC) transporters are a superfamily of efflux pumps that transport numerous compounds across cell membranes. These transporters are located in various human tissues including peripheral blood cells, in particular lymphocytes, and present a high variability of expression and activity. This variability may affect the intracellular concentrations and efficacy of drugs acting within lymphocytes, such as antiretroviral drugs. AREAS COVERED IN THIS REVIEW This review focuses on the current knowledge about the expression, activity, roles and variability of ABC drug transporters in human lymphocytes. The identified modulating factors and their impact on the intracellular pharmacokinetics and efficacy of antiretroviral drugs are also detailed. WHAT THE READER WILL GAIN Controversial data regarding the expression, activity and sources of variability of ABC transporters in lymphocytes are discussed. The modulating factors and their pharmacological consequences regarding antiretroviral therapies are also provided. TAKE HOME MESSAGE Numerous studies have reported conflicting results regarding the expression and activity of ABC drug transporters in lymphocytes. Despite these discrepancies, which may partly result from heterogeneous analytical methods, ABCC1 appears to have the highest expression in lymphocytes and may thus play a predominant role in the resistance to antiretroviral drugs, particularly to protease inhibitors.
Collapse
Affiliation(s)
- Carole Giraud
- Groupe Hospitalier Cochin - Saint-Vincent-de-Paul, Assistance Publique - Hôpitaux de Paris, Centre de Recherche Clinique Paris Descartes, Site Hôpital Tarnier, 89 rue d'Assas, 75006 Paris, France.
| | | | | |
Collapse
|
7
|
Weiss J, Haefeli WE. Impact of ATP-binding cassette transporters on human immunodeficiency virus therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:219-79. [PMID: 20797684 DOI: 10.1016/s1937-6448(10)80005-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though potent antiretrovirals are available against human immunodeficiency virus (HIV)-1 infection, therapy fails in a significant fraction of patients. Among the most relevant reasons for treatment failure are drug toxicity and side effects, but also the development of viral resistance towards the drugs applied. Efflux by ATP-binding cassette (ABC-) transporters represents one major mechanism influencing the pharmacokinetics of antiretroviral drugs and particularly their distribution, thus modifiying the concentration within the infected cells, that is, at the site of action. Moreover, drug-drug interactions may occur at the level of these transporters and modulate their activity or expression thus influencing the efficacy and toxicity of the substrate drugs. This review summarizes current knowledge on the interaction of antiretrovirals used for HIV-1 therapy with ABC-transporters and highlights the impact of ABC-transporters for cellular resistance and therapeutic success. Moreover, the suitability of different cell models for studying the interaction of antiretrovirals with ABC-transporters is discussed.
Collapse
Affiliation(s)
- Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
8
|
Hemauer SJ, Patrikeeva SL, Nanovskaya TN, Hankins GD, Ahmed MS. Opiates inhibit paclitaxel uptake by P-glycoprotein in preparations of human placental inside-out vesicles. Biochem Pharmacol 2009; 78:1272-8. [PMID: 19591810 PMCID: PMC2748165 DOI: 10.1016/j.bcp.2009.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 11/29/2022]
Abstract
The use of either methadone or buprenorphine for treatment of the pregnant opiate-dependent patient improves maternal and neonatal outcome. However, patient outcomes are often complicated by neonatal abstinence syndrome (NAS). The incidence and severity of NAS should depend on opiate concentration in the fetal circulation. Efflux transporters expressed in human placental brush border membranes decrease fetal exposure to medications by their extrusion to the maternal circulation. Accordingly, the concentration of either methadone or buprenorphine in the fetal circulation is, in part, dependent on the activity of the efflux transporters. The objective of this study was to characterize the activity of P-gp and its interaction with opiates in the placental apical membrane. Therefore, brush border membrane vesicles were prepared from human placenta. The vesicles were oriented approximately 75% inside-out, exhibited saturable ATP-dependent uptake of P-gp substrate [(3)H]-paclitaxel with an apparent K(t) of 66+/-38 nM and V(max) of 20+/-3 pmol mg protein (-1)min(-1). Methadone, buprenorphine, and morphine inhibited paclitaxel transport with apparent K(i) of 18, 44, and 90 microM, respectively. Our data indicate that a method has been established to determine the activity of the efflux transporter P-gp, expressed in placental brush border membranes, and the kinetics for the transfer of its prototypic substrate paclitaxel. Furthermore, the method was used to determine the effects of methadone, buprenorphine, and morphine on paclitaxel transfer by placental P-gp and revealed that they have higher affinity to the transporter than its classical inhibitor verapamil (K(i), 300 microM).
Collapse
Affiliation(s)
- Sarah J Hemauer
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-0587, USA
| | - Svetlana L Patrikeeva
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-0587, USA
| | - Tatiana N Nanovskaya
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-0587, USA
| | - Gary D.V. Hankins
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-0587, USA
| | - Mahmoud S Ahmed
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas, 77555-0587, USA
| |
Collapse
|
9
|
van de Ven R, Oerlemans R, van der Heijden JW, Scheffer GL, de Gruijl TD, Jansen G, Scheper RJ. ABC drug transporters and immunity: novel therapeutic targets in autoimmunity and cancer. J Leukoc Biol 2009; 86:1075-87. [PMID: 19745159 DOI: 10.1189/jlb.0309147] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ABC transporters were identified originally for their contribution to clinical MDR as a result of their capacity to extrude various unrelated cytotoxic drugs. More recent reports have shown that ABC transporters can play important roles in the development, differentiation, and maturation of immune cells and are involved in migration of immune effector cells to sites of inflammation. Many of the currently identified, endogenous ABC transporter substrates have immunostimulating effects. Increasing the expression of ABC transporters on immune cells and thereby enhancing immune cell development or functionality may be beneficial to immunotherapy in the field of oncology. On the contrary, in the treatment of autoimmune diseases, blockade of these transporters may prove beneficial, as it could dampen disease activity by compromising immune effector cell functions. This review will focus on the expression, regulation, and substrate specificity of ABC transporters in relation to functional activities of immune effector cells and discusses implications for the treatment of cancer on the one hand and autoimmune diseases on the other.
Collapse
Affiliation(s)
- Rieneke van de Ven
- Department of Pathology, VU University Medical Center/Cancer Center Amsterdam, Amsterdam, Zuid Holland 1081 HV The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Liptrott NJ, Penny M, Bray PG, Sathish J, Khoo SH, Back DJ, Owen A. The impact of cytokines on the expression of drug transporters, cytochrome P450 enzymes and chemokine receptors in human PBMC. Br J Pharmacol 2009; 156:497-508. [PMID: 19154420 PMCID: PMC2697671 DOI: 10.1111/j.1476-5381.2008.00050.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/22/2008] [Accepted: 10/03/2008] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The function of transporters in peripheral blood mononuclear cells (PBMC) has been characterized, but less is known about cytochrome P450 (CYP) enzyme function in these cells. Given that cytokines are dysregulated in many diseases, the purpose of this work was to assess the impact of cytokines on the expression of CYPs, transporters and chemokine receptors in PBMC. EXPERIMENTAL APPROACH Human PBMC were incubated with cytokines for 48 h. ATP-binding cassette (ABC)B1, ABCC1, ABCC2, CYP2B6, CYP3A4, CXCR4 and CCR5 expression were measured by quantitative polymerase chain reaction and flow cytometry at 0, 4, 8, 24 and 48 h. Enzyme activity was assessed using fluorescent probes. KEY RESULTS We show here functional activity of CYP3A4 and CYP2B6 in PBMC. Furthermore, cytokines had a significant impact on the mRNA and protein expression of all proteins. For example, interleukin-2 (IL-2) had a marked impact on ABCB1 mRNA (% control 4745 +/- 11961) and protein (% control 200 +/- 57). Increases in drug efflux transporter expression, in response to cytokines, resulted in reduced cellular accumulation of digoxin [decrease of 17% and 26% for IL-2 and interferon-gamma (IFNgamma) respectively] and saquinavir (decrease of 28% and 30% for IL-2 and IFNgamma respectively). The degree to which drug transporter and chemokine receptor expression changed in response to cytokines was positively correlated (e.g. ABCB1 and CXCR4, r(2) = 0.545). CONCLUSIONS AND IMPLICATIONS These data have important implications for diseases in which cytokines are dysregulated and for which pharmacological intervention targets immune cells.
Collapse
Affiliation(s)
- N J Liptrott
- Department of Pharmacology and Therapeutics, The University of Liverpool, UK.
| | | | | | | | | | | | | |
Collapse
|
11
|
High Levels of P-Glycoprotein Activity in Human Lymphocytes in the First 6 Months of Life. Clin Pharmacol Ther 2008; 85:289-95. [DOI: 10.1038/clpt.2008.221] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Henmi K, Yoshida M, Yoshikawa N, Hirano T. P-Glycoprotein Functions in Peripheral-Blood CD4+ Cells of Patients with Systemic Lupus Erythematosus. Biol Pharm Bull 2008; 31:873-8. [DOI: 10.1248/bpb.31.873] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kayo Henmi
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Masaharu Yoshida
- Renal Unit of the Internal Medicine Department, Hachioji Medical Center, Tokyo Medical University
| | - Noriko Yoshikawa
- Renal Unit of the Internal Medicine Department, Hachioji Medical Center, Tokyo Medical University
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
13
|
Köck K, Grube M, Jedlitschky G, Oevermann L, Siegmund W, Ritter CA, Kroemer HK. Expression of adenosine triphosphate-binding cassette (ABC) drug transporters in peripheral blood cells: relevance for physiology and pharmacotherapy. Clin Pharmacokinet 2007; 46:449-70. [PMID: 17518506 DOI: 10.2165/00003088-200746060-00001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adenosine triphosphate-binding cassette (ABC)-type transport proteins were initially described for their ability to reduce intracellular concentrations of anticancer compounds, thereby conferring drug resistance. In recent years, expression of this type of proteins has also been reported in numerous cell types under physiological conditions; here, these transporters are often reported to alter systemic and local drug disposition (e.g. in the brain or the gastrointestinal tract). In this context, peripheral blood cells have also been found to express several ABC-type transporters. While erythrocytes mainly express multidrug resistance protein (MRP) 1, MRP4 and MRP5, which are discussed with regard to their involvement in glutathione homeostasis (MRP1) and in the efflux of cyclic nucleotides (MRP4 and MRP5), leukocytes also express P-glycoprotein and breast cancer resistance protein. In the latter cell types, the main function of efflux transporters may be protection against toxins, as these cells demonstrate a very high turnover rate. In platelets, only two ABC transporters have been described so far. Besides MRP1, platelets express relatively high amounts of MRP4 not only in the plasma membrane but also in the membrane of dense granules, suggesting relevance for mediator storage. In addition to its physiological function, ABC transporter expression in these structures can be of pharmacological relevance since all systemic drugs reach their targets via circulation, thereby enabling interaction of the therapeutic agent with peripheral blood cells. Moreover, both intended effects and unwanted side effects occur in peripheral blood cells, and intracellular micropharmacokinetics can be affected by these transport proteins. The present review summarises the data available on expression of ABC transport proteins in peripheral blood cells.
Collapse
Affiliation(s)
- Kathleen Köck
- Department of Pharmacology, Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University, Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|