1
|
Hannah WB, Derks TGJ, Drumm ML, Grünert SC, Kishnani PS, Vissing J. Glycogen storage diseases. Nat Rev Dis Primers 2023; 9:46. [PMID: 37679331 DOI: 10.1038/s41572-023-00456-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/09/2023]
Abstract
Glycogen storage diseases (GSDs) are a group of rare, monogenic disorders that share a defect in the synthesis or breakdown of glycogen. This Primer describes the multi-organ clinical features of hepatic GSDs and muscle GSDs, in addition to their epidemiology, biochemistry and mechanisms of disease, diagnosis, management, quality of life and future research directions. Some GSDs have available guidelines for diagnosis and management. Diagnostic considerations include phenotypic characterization, biomarkers, imaging, genetic testing, enzyme activity analysis and histology. Management includes surveillance for development of characteristic disease sequelae, avoidance of fasting in several hepatic GSDs, medically prescribed diets, appropriate exercise regimens and emergency letters. Specific therapeutic interventions are available for some diseases, such as enzyme replacement therapy to correct enzyme deficiency in Pompe disease and SGLT2 inhibitors for neutropenia and neutrophil dysfunction in GSD Ib. Progress in diagnosis, management and definitive therapies affects the natural course and hence morbidity and mortality. The natural history of GSDs is still being described. The quality of life of patients with these conditions varies, and standard sets of patient-centred outcomes have not yet been developed. The landscape of novel therapeutics and GSD clinical trials is vast, and emerging research is discussed herein.
Collapse
Affiliation(s)
- William B Hannah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Terry G J Derks
- Division of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mitchell L Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah C Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Paediatrics, Duke University Medical Center, Durham, NC, USA
| | - John Vissing
- Copenhagen Neuromuscular Center, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
2
|
Gümüş E, Özen H. Glycogen storage diseases: An update. World J Gastroenterol 2023; 29:3932-3963. [PMID: 37476587 PMCID: PMC10354582 DOI: 10.3748/wjg.v29.i25.3932] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 04/30/2023] [Indexed: 06/28/2023] Open
Abstract
Glycogen storage diseases (GSDs), also referred to as glycogenoses, are inherited metabolic disorders of glycogen metabolism caused by deficiency of enzymes or transporters involved in the synthesis or degradation of glycogen leading to aberrant storage and/or utilization. The overall estimated GSD incidence is 1 case per 20000-43000 live births. There are over 20 types of GSD including the subtypes. This heterogeneous group of rare diseases represents inborn errors of carbohydrate metabolism and are classified based on the deficient enzyme and affected tissues. GSDs primarily affect liver or muscle or both as glycogen is particularly abundant in these tissues. However, besides liver and skeletal muscle, depending on the affected enzyme and its expression in various tissues, multiorgan involvement including heart, kidney and/or brain may be seen. Although GSDs share similar clinical features to some extent, there is a wide spectrum of clinical phenotypes. Currently, the goal of treatment is to maintain glucose homeostasis by dietary management and the use of uncooked cornstarch. In addition to nutritional interventions, pharmacological treatment, physical and supportive therapies, enzyme replacement therapy (ERT) and organ transplantation are other treatment approaches for both disease manifestations and long-term complications. The lack of a specific therapy for GSDs has prompted efforts to develop new treatment strategies like gene therapy. Since early diagnosis and aggressive treatment are related to better prognosis, physicians should be aware of these conditions and include GSDs in the differential diagnosis of patients with relevant manifestations including fasting hypoglycemia, hepatomegaly, hypertransaminasemia, hyperlipidemia, exercise intolerance, muscle cramps/pain, rhabdomyolysis, and muscle weakness. Here, we aim to provide a comprehensive review of GSDs. This review provides general characteristics of all types of GSDs with a focus on those with liver involvement.
Collapse
Affiliation(s)
- Ersin Gümüş
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children’s Hospital, Ankara 06230, Turkey
| | - Hasan Özen
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children’s Hospital, Ankara 06230, Turkey
| |
Collapse
|
3
|
Boers SJB, Visser G, Smit PGPA, Fuchs SA. Liver transplantation in glycogen storage disease type I. Orphanet J Rare Dis 2014; 9:47. [PMID: 24716823 PMCID: PMC4113191 DOI: 10.1186/1750-1172-9-47] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/01/2014] [Indexed: 12/17/2022] Open
Abstract
Glycogen storage disease type I (GSDI), an inborn error of carbohydrate metabolism, is caused by defects in the glucose-6-transporter/glucose-6-phosphatase complex, which is essential in glucose homeostasis. Two types exist, GSDIa and GSDIb, each caused by different defects in the complex. GSDIa is characterized by fasting intolerance and subsequent metabolic derangements. In addition to these clinical manifestations, patients with GSDIb suffer from neutropenia with neutrophil dysfunction and inflammatory bowel disease. With the feasibility of novel cell-based therapies, including hepatocyte transplantations and liver stem cell transplantations, it is essential to consider long term outcomes of liver replacement therapy. We reviewed all GSDI patients with liver transplantation identified in literature and through personal communication with treating physicians. Our review shows that all 80 GSDI patients showed improved metabolic control and normal fasting tolerance after liver transplantation. Although some complications might be caused by disease progression, most complications seemed related to the liver transplantation procedure and subsequent immune suppression. These results highlight the potential of other therapeutic strategies, like cell-based therapies for liver replacement, which are expected to normalize liver function with a lower risk of complications of the procedure and immune suppression.
Collapse
Affiliation(s)
| | | | | | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands.
| |
Collapse
|
4
|
Chou JY, Sik Jun H, Mansfield BC. The SLC37 family of phosphate-linked sugar phosphate antiporters. Mol Aspects Med 2013; 34:601-11. [PMID: 23506893 DOI: 10.1016/j.mam.2012.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/08/2012] [Indexed: 12/28/2022]
Abstract
The SLC37 family consists of four sugar-phosphate exchangers, A1, A2, A3, and A4, which are anchored in the endoplasmic reticulum (ER) membrane. The best characterized family member is SLC37A4, better known as the glucose-6-phosphate (G6P) transporter (G6PT). SLC37A1, SLC37A2, and G6PT function as phosphate (Pi)-linked G6P antiporters catalyzing G6P:Pi and Pi:Pi exchanges. The activity of SLC37A3 is unknown. G6PT translocates G6P from the cytoplasm into the lumen of the ER where it couples with either glucose-6-phosphatase-α (G6Pase-α) or G6Pase-β to hydrolyze intraluminal G6P to glucose and Pi. The functional coupling of G6PT with G6Pase-α maintains interprandial glucose homeostasis and the functional coupling of G6PT with G6Pase-β maintains neutrophil energy homeostasis and functionality. A deficiency in G6PT causes glycogen storage disease type Ib, an autosomal recessive disorder characterized by impaired glucose homeostasis, neutropenia, and neutrophil dysfunction. Neither SLC37A1 nor SLC37A2 can functionally couple with G6Pase-α or G6Pase-β, and there are no known disease associations for them or SLC37A3. Since only G6PT matches the characteristics of the physiological ER G6P transporter involved in blood glucose homeostasis and neutrophil energy metabolism, the biological roles for the other SLC37 proteins remain to be determined.
Collapse
Affiliation(s)
- Janice Y Chou
- Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
5
|
Froissart R, Piraud M, Boudjemline AM, Vianey-Saban C, Petit F, Hubert-Buron A, Eberschweiler PT, Gajdos V, Labrune P. Glucose-6-phosphatase deficiency. Orphanet J Rare Dis 2011; 6:27. [PMID: 21599942 PMCID: PMC3118311 DOI: 10.1186/1750-1172-6-27] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 05/20/2011] [Indexed: 01/01/2023] Open
Abstract
Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea). Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty), generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma) and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency). GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia) which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib). Mutations in the genes G6PC (17q21) and SLC37A4 (11q23) respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most commonly confirmed by G6PC (GSDIa) or SLC37A4 (GSDIb) gene analysis, and the indications of liver biopsy to measure G6P activity are getting rarer and rarer. Differential diagnoses include the other GSDs, in particular type III (see this term). However, in GSDIII, glycemia and lactacidemia are high after a meal and low after a fast period (often with a later occurrence than that of type I). Primary liver tumors and Pepper syndrome (hepatic metastases of neuroblastoma) may be evoked but are easily ruled out through clinical and ultrasound data. Antenatal diagnosis is possible through molecular analysis of amniocytes or chorionic villous cells. Pre-implantatory genetic diagnosis may also be discussed. Genetic counseling should be offered to patients and their families. The dietary treatment aims at avoiding hypoglycemia (frequent meals, nocturnal enteral feeding through a nasogastric tube, and later oral addition of uncooked starch) and acidosis (restricted fructose and galactose intake). Liver transplantation, performed on the basis of poor metabolic control and/or hepatocarcinoma, corrects hypoglycemia, but renal involvement may continue to progress and neutropenia is not always corrected in type Ib. Kidney transplantation can be performed in case of severe renal insufficiency. Combined liver-kidney grafts have been performed in a few cases. Prognosis is usually good: late hepatic and renal complications may occur, however, with adapted management, patients have almost normal life span. DISEASE NAME AND SYNONYMS: Glucose-6-phosphatase deficiency or G6P deficiency or glycogen storage disease type I or GSDI or type I glycogenosis or Von Gierke disease or Hepatorenal glycogenosis.
Collapse
Affiliation(s)
- Roseline Froissart
- Centre de Référence Maladies Héréditaires du Métabolisme Hépatique, Service de Pédiatrie, APHP, Clamart cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mehrabi A, Fonouni H, Ayoub E, Rahbari NN, Müller SA, Morath C, Seckinger J, Sadeghi M, Golriz M, Esmaeilzadeh M, Hillebrand N, Weitz J, Zeier M, Büchler MW, Schmidt J, Schmied BM. A single center experience of combined liver kidney transplantation. Clin Transplant 2010; 23 Suppl 21:102-14. [PMID: 19930323 DOI: 10.1111/j.1399-0012.2009.01146.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With advancements in the operative techniques, patient survival following liver transplantation (LTx) has increased substantially. This has led to the acceleration of pre-existing kidney disease because of immunosuppressive nephrotoxicity making additional kidney transplantation (KTx) inevitable. On the other hand, in a growing number of patients on the waiting list to receive liver, long waiting time has resulted in adverse effect of decompensated liver on the kidney function. During the last two decades, the transplant community has considered combined liver kidney transplantation (CLKTx) to overcome this problem. The aim of our study is to present an overview of our experience as well as a review of the literature in CLKTx and to discuss the controversy in this regard. All performed CLKTx (n = 22) at our institution as well as all available reported case series focusing on CLKTx are extracted. The references of the manuscripts were cross-checked to implement further articles into the review. The analyzed parameters include demographic data, indication for LTx and KTx, duration on the waiting list, Model for End-Stage Liver Disease (MELD) score, Child-Turcotte-Pugh (CTP) score, immunosuppressive regimen, post-transplant complications, graft and patient survival, and cause of death. From 1988 to 2009, a total of 22 CLKTx were performed at our institution. The median age of the patients at the time of CLKTx was 44.8 (range: 4.5-58.3 yr). The indications for LTx were liver cirrhosis, hyperoxaluria type 1, polycystic liver disease, primary or secondary sclerosing cholangitis, malignant hepatic epithelioid hemangioendothelioma, cystinosis, and congenital biliary fibrosis. The KTx indications were end-stage renal disease of various causes, hyperoxaluria type 1, polycystic kidney disease, and cystinosis. The mean follow-up duration for CLKTx patients were 4.6 +/- 3.5 yr (range: 0.5-12 yr). Overall, the most important encountered complications were sepsis (n = 8), liver failure leading to retransplantation (n = 4), liver rejection (n = 3), and kidney rejection (n = 1). The overall patient survival rate was 80%. Review of the literature showed that from 1984 to 2008, 3536 CLKTx cases were reported. The main indications for CLKTx were oxalosis of both organs, liver cirrhosis and chronic renal failure, polycystic liver and kidney disease, and liver cirrhosis along with hepatorenal syndrome (HRS). The most common encountered complications following CLKTx were infection, bleeding, biliary complications, retransplantation of the liver, acute hepatic artery thrombosis, and retransplantation of the kidney. From the available data regarding the need for post-operative dialysis (n = 673), a total of 175 recipients (26%) required hemodialysis. During the follow-up period, 154 episodes of liver rejection (4.3%) and 113 episodes of kidney rejection (3.2%) occurred. The cumulative 1, 2, 3, and 5 yr survival of both organs were 78.2%, 74.4%, 62.4%, and 60.9%, respectively. Additionally, the cumulative 1, 2, 3, and 5 yr patient survival were 84.9%, 52.8%, 45.4%, and 42.6%, respectively. The total number of reported deaths was 181 of 2808 cases (6.4%), from them the cause of death in 99 (55%) cases was sepsis. It can be concluded that there is still no definitive evidence of better graft and patient survival in CLKTx recipients when compared with LTx alone because of the complexity of the exact definition of irreversible kidney function in LTx candidates. Additionally, CLKTx is better to be performed earlier than isolated LTx and KTx leading to the avoidance of deterioration of clinical status, high rate of graft loss, and mortality. Shorter graft ischemia time and more effective immunosuppressive regimens can reduce the incidence of graft malfunctioning in CLKTx patients. Providing a model to reliably determine the need for CLKTx seems necessary. Such a model can be shaped based upon new and precise markers of renal function, and modification of MELD system.
Collapse
Affiliation(s)
- A Mehrabi
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Glycogen storage disease type Ib, characterized by disturbed glucose homeostasis, neutropenia, and neutrophil dysfunction, is caused by a deficiency in a ubiquitously expressed glucose-6-phosphate transporter (G6PT). G6PT translocates glucose-6-phosphate (G6P) from the cytoplasm into the lumen of the endoplasmic reticulum, in which it is hydrolyzed to glucose either by a liver/kidney/intestine-restricted glucose-6-phosphatase-alpha (G6Pase-alpha) or by a ubiquitously expressed G6Pase-beta. The role of the G6PT/G6Pase-alpha complex is well established and readily explains why G6PT disruptions disturb interprandial blood glucose homeostasis. However, the basis for neutropenia and neutrophil dysfunction in glycogen storage disease type Ib is poorly understood. Recent studies that are now starting to unveil the mechanisms are presented in this review. RECENT FINDINGS Characterization of G6Pase-beta and generation of mice lacking either G6PT or G6Pase-beta have shown that neutrophils express the G6PT/G6Pase-beta complex capable of producing endogenous glucose. Loss of G6PT activity leads to enhanced endoplasmic reticulum stress, oxidative stress, and apoptosis that underlie neutropenia and neutrophil dysfunction in glycogen storage disease type Ib. SUMMARY Neutrophil function is intimately linked to the regulation of glucose and G6P metabolism by the G6PT/G6Pase-beta complex. Understanding the molecular mechanisms that govern energy homeostasis in neutrophils has revealed a previously unrecognized pathway of intracellular G6P metabolism in neutrophils.
Collapse
Affiliation(s)
- Janice Y Chou
- aProgram on Developmental Endocrinology and Genetics, Section on Cellular Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1830, USA.
| | | | | |
Collapse
|
8
|
Kasahara M, Horikawa R, Sakamoto S, Shigeta T, Tanaka H, Fukuda A, Abe K, Yoshii K, Naiki Y, Kosaki R, Nakagawa A. Living donor liver transplantation for glycogen storage disease type Ib. Liver Transpl 2009; 15:1867-71. [PMID: 19938129 DOI: 10.1002/lt.21929] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glycogen storage disease type 1b (GSD-1b) is due to an autosomal recessive inborn error of carbohydrate metabolism caused by defects in glucose-6-phosphatase translocase. Patients with GSD-1b have severe hypoglycemia with several clinical manifestations of hepatomegaly, obesity, a doll-like face, and neutropenia. Liver transplantation has been indicated for severe glucose intolerance. This study retrospectively reviewed 4 children with a diagnosis of GSD-1b who underwent living-donor liver transplantation (LDLT). Between November 2005 and June 2008, 96 children underwent LDLT with overall patient and graft survival of 92.3%. Of these, 4 (4.2%) were indicated for GSD-1b. All patients are doing well with an excellent quality of life because of the stabilization of glucose intolerance, decreased hospital admission, and normalized neutrophil count. LDLT appears to be a feasible option and is associated with a better quality of life for patients with GSD-1b. Long-term observation may be necessary to collect sufficient data to confirm the efficacy of this treatment modality.
Collapse
Affiliation(s)
- Mureo Kasahara
- Department of Transplant Surgery, National Center for Child Health and Development, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
do Amaral FR, Carvalho VM, Fraga MG, Amaral TMP, Gomes CC, Gomez RS. Oral giant cell granuloma in a patient with glycogen storage disease. Open Dent J 2009; 3:144-6. [PMID: 19590614 PMCID: PMC2707761 DOI: 10.2174/1874210600903010144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/02/2009] [Accepted: 05/08/2009] [Indexed: 12/31/2022] Open
Abstract
The glycogen storage disease (GSD) is a group of inherited disorders that involve deficiencies in the enzymes that metabolize glycogen. The purpose of the present paper is to report a rare case of GSD type 1b that presented both peripheral and central giant cell granuloma, and to discuss the possible explanation for this unusual finding. The use of corticosteroids in the management of central giant cell granuloma is also demonstrated.
Collapse
Affiliation(s)
- Fabrício Rezende do Amaral
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Vantyghem MC, Mention C, Dobbelaere D, Douillard C. Hypoglycémies et manifestations endocriniennes des maladies héréditaires du métabolisme chez l’adulte. ANNALES D'ENDOCRINOLOGIE 2009; 70:25-42. [DOI: 10.1016/j.ando.2008.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/17/2008] [Indexed: 12/20/2022]
|
11
|
Davis MK, Weinstein DA. Liver transplantation in children with glycogen storage disease: controversies and evaluation of the risk/benefit of this procedure. Pediatr Transplant 2008; 12:137-45. [PMID: 18307661 DOI: 10.1111/j.1399-3046.2007.00803.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GSD-I, III, and IV are congenital disorders of glycogen metabolism that are commonly associated with severe liver disease. Liver transplantation has been proposed as a therapy for these disorders. While liver transplantation corrects the primary hepatic enzyme defect, the extrahepatic manifestations of GSD often complicate post-transplantation management. Upon review of the English-language literature, 42 children <19 yr of age were discovered to have undergone liver transplantation for complications associated with GSD (18 patients with GSD-Ia, six with GSD-Ib, one with GSD-III, 17 with GSD-IV). An additional two children followed at our institution have undergone liver transplantation for GSD complications (one with GSD-Ia and one with GSD-III) and are included in this review. The risks and benefits of liver transplantation should be considered prior to performing liver transplantation in these metabolic disorders, particularly in GSD-Ia. As liver pathology is not the major source of morbidity in GSD-Ib and GSD-IIIa, liver transplantation should only be performed when there is high risk for HCC or evidence of substantial cirrhosis or liver dysfunction. Liver transplantation remains the best option for treatment of GSD-IV.
Collapse
Affiliation(s)
- Michael K Davis
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610-0296, USA.
| | | |
Collapse
|
12
|
Ozen H. Glycogen storage diseases: new perspectives. World J Gastroenterol 2007; 13:2541-2553. [PMID: 17552001 PMCID: PMC4146814 DOI: 10.3748/wjg.v13.i18.2541] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 03/30/2007] [Accepted: 03/31/2007] [Indexed: 02/06/2023] Open
Abstract
Glycogen storage diseases (GSD) are inherited metabolic disorders of glycogen metabolism. Different hormones, including insulin, glucagon, and cortisol regulate the relationship of glycolysis, gluconeogenesis and glycogen synthesis. The overall GSD incidence is estimated 1 case per 20000-43000 live births. There are over 12 types and they are classified based on the enzyme deficiency and the affected tissue. Disorders of glycogen degradation may affect primarily the liver, the muscle, or both. Type Ia involves the liver, kidney and intestine (and Ib also leukocytes), and the clinical manifestations are hepatomegaly, failure to thrive, hypoglycemia, hyperlactatemia, hyperuricemia and hyperlipidemia. Type IIIa involves both the liver and muscle, and IIIb solely the liver. The liver symptoms generally improve with age. Type IV usually presents in the first year of life, with hepatomegaly and growth retardation. The disease in general is progressive to cirrhosis. Type VI and IX are a heterogeneous group of diseases caused by a deficiency of the liver phosphorylase and phosphorylase kinase system. There is no hyperuricemia or hyperlactatemia. Type XI is characterized by hepatic glycogenosis and renal Fanconi syndrome. Type II is a prototype of inborn lysosomal storage diseases and involves many organs but primarily the muscle. Types V and VII involve only the muscle.
Collapse
Affiliation(s)
- Hasan Ozen
- Division of Gastroenterology, Hepatology and Nutrition, Hacettepe University Children's Hospital, Ankara, Turkey.
| |
Collapse
|