1
|
Shi CC, Song YQ, He RJ, Guan XQ, Song LL, Chen ST, Sun MR, Ge GB, Zhang LR. Rapalogues as hCES2A Inhibitors: In Vitro and In Silico Investigations. Eur J Drug Metab Pharmacokinet 2020; 46:129-139. [PMID: 33140264 DOI: 10.1007/s13318-020-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Rapamycin and its semi-synthetic analogues (rapalogues) are frequently used in combination with other prescribed medications in clinical settings. Although the inhibitory effects of rapalogues on cytochrome P450 enzymes (CYPs) have been well examined, the inhibition potentials of rapalogues on human esterases have not been investigated. Herein, the inhibition potentials and inhibitory mechanisms of six marketed rapalogues on human esterases are investigated. METHODS The inhibitory effects of six marketed rapalogues (rapamycin, zotarolimus, temsirolimus, everolimus, pimecrolimus and tacrolimus) on three major esterases, including human carboxylesterases 1 (hCES1A), human carboxylesterases 2 (hCES2A) and butyrylcholinesterase (BuChE), were assayed using isozyme-specific substrates. Inhibition kinetic analyses and docking simulations were performed to investigate the inhibitory mechanisms of the rapalogues with strong hCES2A inhibition potency. RESULTS Zotarolimus and pimecrolimus displayed strong inhibition of human hCES2A but these agents did not inhibit hCES1A or BuChE. Further investigation demonstrated that zotarolimus could strongly inhibit intracellular hCES2A in living HepG2 cells, with an estimated IC50 value of 4.09 µM. Inhibition kinetic analyses revealed that zotarolimus inhibited hCES2A-catalyzed fluorescein diacetate hydrolysis in a mixed manner, with the Ki value of 1.61 µM. Docking simulations showed that zotarolimus could tightly bind on hCES2A at two district ligand-binding sites, consistent with its mixed inhibition mode. CONCLUSION Our findings demonstrate that several marketed rapalogues are potent and specific hCES2A inhibitors, and these agents can serve as leading compounds for the development of more efficacious hCES2A inhibitors to modulate the pharmacokinetic profiles and toxicity of hCES2A-substrate drugs (such as the anticancer agent irinotecan).
Collapse
Affiliation(s)
- Cheng-Cheng Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China. .,Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Yun-Qing Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Rong-Jing He
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xiao-Qing Guan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Li-Lin Song
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shi-Tong Chen
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Meng-Ru Sun
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
2
|
Zhang Y, Wang X, Mao L, Yang D, Gao W, Tian Z, Zhang M, Yang X, Ma K, Wu Y, Ni B. Dual roles of IL-22 at ischemia-reperfusion injury and acute rejection stages of rat allograft liver transplantation. Oncotarget 2017; 8:115384-115397. [PMID: 29383167 PMCID: PMC5777779 DOI: 10.18632/oncotarget.23266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
Interleukin-22 (IL-22) is a recently identified regulator of inflammation, but little is known about its role in liver transplantation. Therefore, in this study, we explored the roles and the underlying mechanisms of IL-22 in acute allograft rejection by using a rat allogeneic liver transplantation model. Results showed that allograft liver transplantation led to damage of the parent liver and to significantly increased IL-22 expression in the allograft liver and plasma of the recipient rats compared with the rats who received isografts. Moreover, the significantly increased IL-22 expression was accompanied by markedly increased level of phospho-STAT3 in the allogeneic liver tissues after transplantation. Of note, neutralization of the IL-22 protein in recipient rats significantly worsened the function of the allograft liver at 1 day post-transplantation (ischemia-reperfusion injury, IRI) but improved the function at 7 days post-transplantation (acute rejection, AR). At IRI stage, IL-22 protected liver function through the increase of anti-apoptosis and pro-regeneration cytokines. However, IL-22 led to the increase of pro-inflammation factors at AR stage, accompanied by the marked increase of the Th17 and the marked decrease of Treg cells in allograft recipient rats through modulating the expression of chemokines for different cell types, which however were reversed by in vivo IL-22 neutralization. Results indicate the dual roles of IL-22 and suggest the differential potential clinical application of IL-22 at different stage of allograft liver transplantation.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China
- Laboratory Department, 150th Hospital of PLA, Luoyang 471031, PR China
| | - Xiaofei Wang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Liwei Mao
- Department of Oncology, 309th Hospital of PLA, Beijing 100091, PR China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Weiwu Gao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Mengjie Zhang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Xia Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Kuansheng Ma
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Bing Ni
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China
| |
Collapse
|
3
|
Dall'Agnol DJR, Corá LA, Teixeira MDCB, de Lima MB, Gama LA, Miranda JRDA, Américo MF. Gastrointestinal disorders after immunosuppression: an experimental model to evaluate the influence of monotherapy on motility parameters. Exp Physiol 2017; 102:924-933. [PMID: 28556421 DOI: 10.1113/ep086267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to propose an animal model for investigating the effects of immunosuppressive monotherapy on gastrointestinal motility using a non-invasive biomagnetic technique. What is main finding and its importance? In our experimental study, immunosuppressive drugs currently in use accelerated gastric emptying whilst increasing the frequency and amplitude of gastric contractions after treatment, except for Mycophenolate and azathioprine. Alternating current biosusceptometry is a useful tool to evaluate side-effects of drugs on the gastrointestinal tract, which will help in understanding the symptoms and improving clinical management of patients. The aim was to propose an animal model for investigating the effects of immunosuppressive monotherapy on gastrointestinal motility using a non-invasive biomagnetic technique. Male Wistar rats were randomly distributed into the following treatment groups: ciclosporin, tacrolimus, prednisone, sirolimus, mycophenolate mofetil, everolimus, azathioprine and control. Each animal was treated for 14 days by gavage with dosages ranging from 1 to 20 mg kg-1 day-1 considering the area-to-volume ratio and hepatic metabolism. Gastrointestinal transit and gastric contractility measurements were evaluated by alternating current biosusceptometry before and after treatment. Gastric emptying was faster in animals treated with tacrolimus, prednisone, sirolimus and everolimus compared with control animals (126.7 ± 12.7 min). There was a significant increase in the frequency of contractions after ciclosporin, tacrolimus, azathioprine and sirolimus treatment compared with control animals (4.6 ± 0.3 cycles min-1 ). Increases in the amplitude of contraction were observed after treatment with tacrolimus, sirolimus and everolimus compared with control rats (34.9 ± 6.0 dB). The results showed that our animal model was suitable for demonstrating that most immunosuppressive drugs currently in use impaired at least one gastrointestinal motility parameter. As a non-invasive technique, alternating current biosusceptometry is a potentially useful tool for evaluation of side-effects of drugs in gastrointestinal tract, helping us to understand the symptoms to improve clinical management of patients.
Collapse
Affiliation(s)
- Denize Jussara Rupolo Dall'Agnol
- Postgraduate Program in Pharmacology and Biotechnology - São Paulo State University - UNESP, Institute of Biosciences, Botucatu-SP, Brazil
| | | | | | - Maysa Bruno de Lima
- Institute of Biological Sciences and Health - Federal University of Mato Grosso - UFMT, Barra do Garças, Mato Grosso, Brazil
| | - Loyane Almeida Gama
- Postgraduate Program in Pharmacology and Biotechnology - São Paulo State University - UNESP, Institute of Biosciences, Botucatu-SP, Brazil
| | - José Ricardo de Arruda Miranda
- Department of Physics and Biophysics - São Paulo State University - UNESP, Institute of Biosciences - Botucatu/SP, Brazil
| | - Madileine Francely Américo
- Institute of Biological Sciences and Health - Federal University of Mato Grosso - UFMT, Barra do Garças, Mato Grosso, Brazil
| |
Collapse
|
4
|
Diehl R, Ferrara F, Müller C, Dreyer AY, McLeod DD, Fricke S, Boltze J. Immunosuppression for in vivo research: state-of-the-art protocols and experimental approaches. Cell Mol Immunol 2016; 14:146-179. [PMID: 27721455 PMCID: PMC5301156 DOI: 10.1038/cmi.2016.39] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023] Open
Abstract
Almost every experimental treatment strategy using non-autologous cell, tissue or organ transplantation is tested in small and large animal models before clinical translation. Because these strategies require immunosuppression in most cases, immunosuppressive protocols are a key element in transplantation experiments. However, standard immunosuppressive protocols are often applied without detailed knowledge regarding their efficacy within the particular experimental setting and in the chosen model species. Optimization of such protocols is pertinent to the translation of experimental results to human patients and thus warrants further investigation. This review summarizes current knowledge regarding immunosuppressive drug classes as well as their dosages and application regimens with consideration of species-specific drug metabolization and side effects. It also summarizes contemporary knowledge of novel immunomodulatory strategies, such as the use of mesenchymal stem cells or antibodies. Thus, this review is intended to serve as a state-of-the-art compendium for researchers to refine applied experimental immunosuppression and immunomodulation strategies to enhance the predictive value of preclinical transplantation studies.
Collapse
Affiliation(s)
- Rita Diehl
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | - Fabienne Ferrara
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany.,Institute of Vegetative Physiology, Charite University Medicine and Center for Cardiovascular Research, Berlin 10115, Germany
| | - Claudia Müller
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | - Antje Y Dreyer
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | | | - Stephan Fricke
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany
| | - Johannes Boltze
- Fraunhofer-Institute for Cell Therapy and Immunology, Leipzig 04103, Germany.,Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
5
|
Ruiz P, Maldonado P, Hidalgo Y, Sauma D, Rosemblatt M, Bono MR. Alloreactive Regulatory T Cells Allow the Generation of Mixed Chimerism and Transplant Tolerance. Front Immunol 2015; 6:596. [PMID: 26635810 PMCID: PMC4655502 DOI: 10.3389/fimmu.2015.00596] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/06/2015] [Indexed: 01/27/2023] Open
Abstract
The induction of donor-specific transplant tolerance is one of the main goals of modern immunology. Establishment of a mixed chimerism state in the transplant recipient has proven to be a suitable strategy for the induction of long-term allograft tolerance; however, current experimental recipient preconditioning protocols have many side effects, and are not feasible for use in future therapies. In order to improve the current mixed chimerism induction protocols, we developed a non-myeloablative bone-marrow transplant (NM-BMT) protocol using retinoic acid (RA)-induced alloantigen-specific Tregs, clinically available immunosuppressive drugs, and lower doses of irradiation. We demonstrate that RA-induced alloantigen-specific Tregs in addition to a NM-BMT protocol generates stable mixed chimerism and induces tolerance to allogeneic secondary skin allografts in mice. Therefore, the establishment of mixed chimerism through the use of donor-specific Tregs rather than non-specific immunosuppression could have a potential use in organ transplantation.
Collapse
Affiliation(s)
- Paulina Ruiz
- Departmento de Biología, Facultad de Ciencias, Universidad de Chile , Santiago , Chile ; Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Paula Maldonado
- Departmento de Biología, Facultad de Ciencias, Universidad de Chile , Santiago , Chile
| | - Yessia Hidalgo
- Departmento de Biología, Facultad de Ciencias, Universidad de Chile , Santiago , Chile
| | - Daniela Sauma
- Departmento de Biología, Facultad de Ciencias, Universidad de Chile , Santiago , Chile
| | - Mario Rosemblatt
- Departmento de Biología, Facultad de Ciencias, Universidad de Chile , Santiago , Chile ; Fundación Ciencia y Vida , Santiago , Chile ; Facultad de Ciencias Biológicas, Universidad Andres Bello , Santiago , Chile
| | - Maria Rosa Bono
- Departmento de Biología, Facultad de Ciencias, Universidad de Chile , Santiago , Chile
| |
Collapse
|