1
|
Lui KNC, NGAN ESW. Human Pluripotent Stem Cell-Based Models for Hirschsprung Disease: From 2-D Cell to 3-D Organoid Model. Cells 2022; 11:cells11213428. [PMID: 36359824 PMCID: PMC9657902 DOI: 10.3390/cells11213428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
Hirschsprung disease (HSCR) is a complex congenital disorder caused by defects in the development of the enteric nervous system (ENS). It is attributed to failures of the enteric neural crest stem cells (ENCCs) to proliferate, differentiate and/or migrate, leading to the absence of enteric neurons in the distal colon, resulting in colonic motility dysfunction. Due to the oligogenic nature of the disease, some HSCR conditions could not be phenocopied in animal models. Building the patient-based disease model using human induced pluripotent stem cells (hPSC) has opened up a new opportunity to untangle the unknowns of the disease. The expanding armamentarium of hPSC-based therapies provides needed new tools for developing cell-replacement therapy for HSCR. Here we summarize the recent studies of hPSC-based models of ENS in 2-D and 3-D culture systems. These studies have highlighted how hPSC-based models complement the population-based genetic screens and bioinformatic approaches for the discovery of new HSCR susceptibility genes and provide a human model for the close-to-physiological functional studies. We will also discuss the potential applications of these hPSC-based models in translational medicines and their advantages and limitations. The use of these hPSC-based models for drug discovery or cell replacement therapy likely leads to new treatment strategies for HSCR in the future. Further improvements in incorporating hPSC-based models with the human-mouse chimera model and organ-on-a-chip system for establishing a better disease model of HSCR and for drug discovery will further propel us to success in the development of an efficacious treatment for HSCR.
Collapse
|
2
|
Abstract
OPINION STATEMENT Diabetes mellitus (DM) and its associated complications are becoming increasingly prevalent. Gastrointestinal symptoms associated with diabetes is known as diabetic enteropathy (DE) and may manifest as either diarrhea, fecal incontinence, constipation, dyspepsia, nausea, and vomiting or a combination of symptoms. The long-held belief that vagal autonomic neuropathy is the primary cause of DE has recently been challenged by newer theories of disease development. Specifically, hyperglycemia and the resulting oxidative stress on neural networks, including the nitrergic neurons and interstitial cells of Cajal (ICC), are now believed to play a central role in the development of DE. DE occurs in the majority of patients with diabetes; however, tools for early diagnosis and targeted therapy to counter the detrimental and potentially irreversible effects on the small bowel are lacking. Delay in diagnosis is further compounded by the fact that DE symptoms overlap with those of gastroparesis or can be confused with side effects from diabetes medications. Still, early recognition of the presence of DE is essential to mitigating symptoms and preventing further progression of complications including dysmotility and malabsorption. Current diagnostic modalities include manometry, wireless motility capsule (SmartPill™), and scintigraphy; however, these are not regularly utilized in clinical practice due to limited availability. Several medications are available for symptom relief in DE patients including rifaximin for small intestinal bacterial overgrowth (SIBO) and somatostatin analogues for diarrhea. While rodent models on stem cell therapy and alteration of the microbiome are promising, there is still a great need for further research on the pathologic underpinnings and development of novel treatment modalities for DE.
Collapse
Affiliation(s)
- Jonathan Gotfried
- Temple University Digestive Disease Center, Temple University Hospital, Philadelphia, PA, USA
| | - Stephen Priest
- Temple University Lewis Katz School of Medicine at Temple University & Temple University Health System, Philadelphia, PA, USA
| | - Ron Schey
- Temple University Digestive Disease Center, Temple University Hospital, Philadelphia, PA, USA. .,Temple University Lewis Katz School of Medicine at Temple University & Temple University Health System, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Burns AJ, Goldstein AM, Newgreen DF, Stamp L, Schäfer KH, Metzger M, Hotta R, Young HM, Andrews PW, Thapar N, Belkind-Gerson J, Bondurand N, Bornstein JC, Chan WY, Cheah K, Gershon MD, Heuckeroth RO, Hofstra RMW, Just L, Kapur RP, King SK, McCann CJ, Nagy N, Ngan E, Obermayr F, Pachnis V, Pasricha PJ, Sham MH, Tam P, Vanden Berghe P. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev Biol 2016; 417:229-51. [PMID: 27059883 DOI: 10.1016/j.ydbio.2016.04.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Accepted: 04/02/2016] [Indexed: 12/22/2022]
Abstract
Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts' views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic.
Collapse
Affiliation(s)
- Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donald F Newgreen
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Victoria, Australia
| | - Lincon Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Karl-Herbert Schäfer
- University of Applied Sciences, Kaiserlautern, Germany; Clinic of Pediatric Surgery, University Hospital Mannheim, University Heidelberg, Germany
| | - Marco Metzger
- Fraunhofer-Institute Interfacial Engineering and Biotechnology IGB Translational Centre - Würzburg branch and University Hospital Würzburg - Tissue Engineering and Regenerative Medicine (TERM), Würzburg, Germany
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jaime Belkind-Gerson
- Division of Gastroenterology, Hepatology and Nutrition, Massachusetts General Hospital for Children, Harvard Medical School, Boston, USA
| | - Nadege Bondurand
- INSERM U955, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France; Université Paris-Est, UPEC, F-94000 Créteil, France
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kathryn Cheah
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University, New York 10032, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, PA 19104, USA
| | - Robert M W Hofstra
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lothar Just
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Germany
| | - Raj P Kapur
- Department of Pathology, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Sebastian K King
- Department of Paediatric and Neonatal Surgery, The Royal Children's Hospital, Melbourne, Australia
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Elly Ngan
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Florian Obermayr
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, D-72076 Tübingen, Germany
| | | | | | - Mai Har Sham
- Department of Biochemistry, The University of Hong Kong, Hong Kong
| | - Paul Tam
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), TARGID, University of Leuven, Belgium
| |
Collapse
|
4
|
Hotta R, Cheng L, Graham HK, Nagy N, Belkind-Gerson J, Mattheolabakis G, Amiji MM, Goldstein AM. Delivery of enteric neural progenitors with 5-HT4 agonist-loaded nanoparticles and thermosensitive hydrogel enhances cell proliferation and differentiation following transplantation in vivo. Biomaterials 2016; 88:1-11. [PMID: 26922325 DOI: 10.1016/j.biomaterials.2016.02.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/29/2022]
Abstract
Cell therapy offers an innovative approach for treating enteric neuropathies. Postnatal gut-derived enteric neural stem/progenitor cells (ENSCs) represent a potential autologous source, but have a limited capacity for proliferation and neuronal differentiation. Since serotonin (5-HT) promotes enteric neuronal growth during embryonic development, we hypothesized that serotonin receptor agonism would augment growth of neurons from transplanted ENSCs. Postnatal ENSCs were isolated from 2 to 4 week-old mouse colon and cultured with 5-HT4 receptor agonist (RS67506)-loaded liposomal nanoparticles. ENSCs were co-cultured with mouse colon explants in the presence of RS67506-loaded (n = 3) or empty nanoparticles (n = 3). ENSCs were also transplanted into mouse rectum in vivo with RS67506-loaded (n = 8) or blank nanoparticles (n = 4) confined in a thermosensitive hydrogel, Pluronic F-127. Neuronal density and proliferation were analyzed immunohistochemically. Cultured ENSCs gave rise to significantly more neurons in the presence of RS67506-loaded nanoparticles. Similarly, colon explants had significantly increased neuronal density when RS67506-loaded nanoparticles were present. Finally, following in vivo cell delivery, co-transplantation of ENSCs with 5-HT4 receptor agonist-loaded nanoparticles led to significantly increased neuronal density and proliferation. We conclude that optimization of postnatal ENSCs can support their use in cell-based therapies for neurointestinal diseases.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lily Cheng
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hannah K Graham
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Jaime Belkind-Gerson
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - George Mattheolabakis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, MA, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, MA, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
A Time-Limited and Partially Reversible Model of Hypoganglionosis Induced by Benzalkonium Chloride Treatment. Neurochem Res 2016; 41:1138-44. [PMID: 26738989 DOI: 10.1007/s11064-015-1806-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 01/05/2023]
Abstract
Serosal application of benzalkonium chloride (BAC) has been previously applied to produce a model of aganglionosis; however, confusion remains regarding the extent of chemical ablation of enteric myenteric plexus after BAC treatment. The time sequence of BAC-induced effects on the myenteric plexus of the rat colon was determined and followed the morphologic changes. After sacrifice of animals 7, 14, 28, 56, 84 or 168 days postintervention, colonic tissue samples were removed, fixed in formalin, and cut into 5-μm longitudinal sections for histological analysis. The neural analysis was used to re-evaluate BAC treatments for the appropriate model. Compared with rats in sham groups, rats in 0.1 %-30-min BAC group maintained only 15.27 ± 4.80 % of ganglia per section in a 1-cm/5-μm slice and 11.76 ± 2.30 % of ganglionic cells after 28 days, the lower and stable number of ganglionic cells between Day 7 and 84 (from 11.67 ± 2.10 to 19.05 ± 5.10 %). Although an increase, ganglionic cell numbers did not recover at Day168 when compared with the numbers in sham groups. The results showed that characteristics of rats in the 0.1 %-30-min BAC group between Day 7 and 84 most closely kept in stable state, suggesting that these treatment parameters are ideal for producing a hypoganglia model of hypoganglionosis.
Collapse
|
6
|
Zhou Y, Besner G. Transplantation of amniotic fluid-derived neural stem cells as a potential novel therapy for Hirschsprung's disease. J Pediatr Surg 2016; 51:87-91. [PMID: 26597391 DOI: 10.1016/j.jpedsurg.2015.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/07/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND/PURPOSE We have previously shown that embryonic enteric neural stem cells (NSCs) isolated from the intestine colonize aganglionic intestine upon transplantation, but posttransplantation cell survival limits efficacy. The aims of this study were to investigate whether transplantation of amniotic fluid (AF)-derived NSCs could improve survival of the engrafted cells and promote functional recovery of the diseased colon. METHODS AF cells were induced into NSCs with neurogenic medium, and further differentiated into neurons and glial cells. Ednrb knockout mice received an intestinal intramuscular injection of 20,000 AF-derived NSCs into the aganglionic colon. Engrafted cells were visualized and characterized by immunohistochemistry for GFP, neuronal, and glial cell markers. Colonic motility was quantified by colonic bead expulsion time. RESULTS AF-derived NSCs had increased expression levels of the NSC marker Nestin and the glial cell marker GFAP compared to enteric NSCs. Transplanted AF-derived NSCs had decreased apoptosis and increased survival compared to enteric NSCs. Colonic motility was significantly improved in Ednrb knockout mice transplanted with AF-derived NSCs, as demonstrated by significantly decreased colonic bead expulsion time. CONCLUSION AF-derived NSCs have enhanced survival upon transplantation into a defective enteric nervous system. Transplantation of AF-derived NSCs may represent a potential novel future therapy for the treatment of Hirschsprung's disease.
Collapse
Affiliation(s)
- Yu Zhou
- The Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Gail Besner
- The Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, The Ohio State University College of Medicine, Columbus, OH, United States.
| |
Collapse
|
7
|
Cheng LS, Hotta R, Graham HK, Nagy N, Goldstein AM, Belkind-Gerson J. Endoscopic delivery of enteric neural stem cells to treat Hirschsprung disease. Neurogastroenterol Motil 2015; 27:1509-14. [PMID: 26190543 PMCID: PMC4600089 DOI: 10.1111/nmo.12635] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/18/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transplantation of enteric neural stem cells (ENSC) holds promise as a potential therapy for enteric neuropathies, including Hirschsprung disease. Delivery of transplantable cells via laparotomy has been described, but we propose a novel, minimally invasive endoscopic method of cell delivery. METHODS Enteric neural stem cells for transplantation were cultured from dissociated gut of postnatal donor mice. Twelve recipient mice, including Ednrb(-/-) mice with distal colonic aganglionosis, underwent colonoscopic injection of ENSC under direct vision using a 30-gauge Hamilton needle passed through a rigid cystoureteroscope. Cell engraftment, survival, and neuroglial differentiation were studied 1-4 weeks after the procedure. KEY RESULTS All recipient mice tolerated the procedure without complications and survived to sacrifice. Transplanted cells were found within the colonic wall in 9 of 12 recipient mice with differentiation into enteric neurons and glia. CONCLUSIONS & INFERENCES Endoscopic injection of ENSC is a safe and reliable method for cell delivery, and can be used to deliver a large number of cells to a specific area of disease. This minimally invasive endoscopic approach may prove beneficial to future human applications of cell therapy for neurointestinal disease.
Collapse
Affiliation(s)
- Lily S. Cheng
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah K. Graham
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Semmelweis University, Budapest, Hungary
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Pediatric Neurogastroenterology Program, MassGeneral Hospital for Children, Boston, MA, USA
| | - Jaime Belkind-Gerson
- Pediatric Neurogastroenterology Program, MassGeneral Hospital for Children, Boston, MA, USA,Department of Pediatric Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Abstract
The enteric nervous system is the intrinsic innervation of the gut. Several neuromuscular disorders affect the neurons and glia of the enteric nervous system adversely, resulting in disruptions in gastrointestinal motility and function. Pharmacological interventions to remedy gastrointestinal function do not address the underlying cause of dysmotility arising from lost, absent, or damaged enteric neuroglial circuitry. Cell-based therapies have gained traction in the past decade, following the discovery of several adult stem cell niches in the human body. Adult neural stem cells can be isolated from the postnatal and adult intestine using minimally invasive biopsies. These stem cells retain the ability to differentiate into several functional classes of enteric neurons and enteric glia. Upon identification of these cells, several groups have also established that transplantation of these cells into aganglionic or dysganglionic intestine rescues gastrointestinal motility and function. This chapter highlights key studies performed in the field of stem cell transplantation therapies that are targeted towards the remedy of gastrointestinal motility and function.
Collapse
Affiliation(s)
- Khalil N Bitar
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Richard H Dean Biomedical Engineering Building, Winston-Salem, NC, 27101, USA,
| | | |
Collapse
|
9
|
Wagner JP, Sullins VF, Khalil HA, Dunn JCY. A durable model of Hirschsprung's colon. J Pediatr Surg 2014; 49:1804-8. [PMID: 25487488 PMCID: PMC4261142 DOI: 10.1016/j.jpedsurg.2014.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Hirschsprung's disease is characterized by colonic aganglionosis, curable only by surgical correction. Stem cells may offer regenerative benefits while preventing surgical risks. Existing Hirschsprung's model systems are limited by alimentary compromise and spontaneous ganglionic reconstitution. We endeavored to generate a model of permanent colonic aganglionosis to support longitudinal cell therapy studies. METHODS Among adult female Lewis rats (n=11), laparotomy was performed and one-centimeter segments of descending colon were isolated from continuity and denervated by trans-serosal benzalkonium chloride (BAC) exposure. Postoperative weights were plotted. The colon segments were retrieved after 50 or 100days. Immunohistochemical staining (IHC) for beta-III tubulin (TUJ1) and glial fibrillary acid protein (GFAP) revealed colonic ganglia. Muscle layer diameter and the presence of ganglia were contrasted between normal and denervated segments. RESULTS All animals survived, experienced 5% weight loss after one week, and then consistently gained weight. Isolated segments had significantly hypertrophied smooth muscle layers compared to normal colon. Ganglia were identified by IHC in normal colonic segments, and denervated colonic segments had no IHC evidence of myenteric ganglia. CONCLUSION Colonic segmental isolation and denervation result in an effective model of irreversible colonic aganglionosis. Animals retain alimentary function. Muscularis hypertrophy, myenteric denervation, and normal animal longevity are suitable for long-term studies of cell therapy.
Collapse
Affiliation(s)
- Justin P. Wagner
- Department of Surgery, Division of Pediatric Surgery, University of California, Los Angeles, Los Angeles, CA 90095-1749, USA
| | - Veronica F. Sullins
- Department of Surgery, Division of Pediatric Surgery, University of California, Los Angeles, Los Angeles, CA 90095-1749, USA
| | - Hassan A. Khalil
- Department of Surgery, Division of Pediatric Surgery, University of California, Los Angeles, Los Angeles, CA 90095-1749, USA
| | - James C. Y. Dunn
- Department of Surgery, Division of Pediatric Surgery, University of California, Los Angeles, Los Angeles, CA 90095-1749, USA,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095-7098, USA,Corresponding Author: James C. Y. Dunn, Department of Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave 72-140 CHS, Los Angeles, CA 90095, USA, Tel.: +1 310 206 2429, Fax: +1 310 206 1120,
| |
Collapse
|
10
|
Wagner JP, Sullins VF, Dunn JCY. A novel in vivo model of permanent intestinal aganglionosis. J Surg Res 2014; 192:27-33. [PMID: 25015748 DOI: 10.1016/j.jss.2014.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/20/2014] [Accepted: 06/04/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Enteric neuromuscular disease is a characteristic of several disease states, including Hirschsprung disease, esophageal achalasia, Chagas disease, and gastroparesis. Medical therapy for these conditions is limited, and surgical intervention may incur significant morbidity. Alternatively, transplantation of neural progenitor cells may regenerate enteric ganglia. Existing aganglionosis model systems are limited by swift animal demise or by spontaneous regeneration of native ganglia. We propose a novel protocol to induce permanent aganglionosis in a segment of rat jejunum, which may serve as an experimental transplantation target for cellular therapy. MATERIALS AND METHODS This protocol was performed in 17 adult female Sprague-Dawley rats. A laparotomy was performed and a 1-cm segment of jejunum was isolated from continuity. Among 14 rats, the isolated segments were treated with benzalkonium chloride (BAC) for 20 min to induce aganglionosis. Jejunal segment isolation was performed without BAC treatment in three rats. The animals were euthanized at posttreatment days 21-166. Muscle layer diameter was compared among normal, isolated, and BAC-treated isolated jejunal segments. The presence of jejunal ganglia was documented by immunohistochemical staining (IHC) for beta-III tubulin (TUJ1) and S100, markers of neuronal and glial cell lineages, respectively. RESULTS Ganglia were identified by IHC in normal and isolated jejunal segments. Isolated segments had significantly hypertrophied smooth muscle layers compared with normal jejunum (diameter 343 ± 53 μm versus 211 ± 37 μm, P < 0.0001). BAC-treated jejunal segments had no IHC evidence of ganglionic structures. Aganglionosis was persistent in all specimens up to 166 days after treatment. CONCLUSIONS The exclusion of a jejunal segment from continuity and concurrent treatment with BAC results in an effective, reproducible, and permanent model of aganglionosis. Muscular hypertrophy and aganglionosis in the isolated jejunal segment make it an ideal recipient site for transplantation of neuroglial precursor cells.
Collapse
Affiliation(s)
- Justin P Wagner
- Department of Surgery, University of California, Los Angeles, Los Angeles, California
| | - Veronica F Sullins
- Department of Surgery, University of California, Los Angeles, Los Angeles, California
| | - James C Y Dunn
- Division of Pediatric Surgery, Department of Surgery, University of California, Los Angeles, Los Angeles, California; Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
11
|
Bitar KN, Raghavan S, Zakhem E. Tissue engineering in the gut: developments in neuromusculature. Gastroenterology 2014; 146:1614-24. [PMID: 24681129 PMCID: PMC4035447 DOI: 10.1053/j.gastro.2014.03.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
The complexity of the gastrointestinal (GI) tract lies in its anatomy as well as in its physiology. Several different cell types populate the GI tract, adding to the complexity of cell sourcing for regenerative medicine. Each cell layer has a specialized function in mediating digestion, absorption, secretion, motility, and excretion. Tissue engineering and regenerative medicine aim to regenerate the specific layers mimicking architecture and recapitulating function. Gastrointestinal motility is the underlying program that mediates the diverse functions of the intestines, as an organ. Hence, the first logical step in GI regenerative medicine is the reconstruction of the tubular smooth musculature along with the drivers of their input, the enteric nervous system. Recent advances in the field of GI tissue engineering have focused on the use of scaffolding biomaterials in combination with cells and bioactive factors. The ability to innervate the bioengineered muscle is a critical step to ensure proper functionality. Finally, in vivo studies are essential to evaluate implant integration with host tissue, survival, and functionality. In this review, we focus on the tubular structure of the GI tract, tools for innervation, and, finally, evaluation of in vivo strategies for GI replacements.
Collapse
Affiliation(s)
- Khalil N. Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| | - Shreya Raghavan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| | - Elie Zakhem
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| |
Collapse
|
12
|
Isolation, expansion and transplantation of postnatal murine progenitor cells of the enteric nervous system. PLoS One 2014; 9:e97792. [PMID: 24871092 PMCID: PMC4037209 DOI: 10.1371/journal.pone.0097792] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/24/2014] [Indexed: 01/17/2023] Open
Abstract
Neural stem or progenitor cells have been proposed to restore gastrointestinal function in patients suffering from congenital or acquired defects of the enteric nervous system. Various, mainly embryonic cell sources have been identified for this purpose. However, immunological and ethical issues make a postnatal cell based therapy desirable. We therefore evaluated and quantified the potential of progenitor cells of the postnatal murine enteric nervous system to give rise to neurons and glial cells in vitro. Electrophysiological analysis and BrdU uptake studies provided direct evidence that generated neurons derive from expanded cells in vitro. Transplantation of isolated and expanded postnatal progenitor cells into the distal colon of adult mice demonstrated cell survival for 12 weeks (end of study). Implanted cells migrated within the gut wall and differentiated into neurons and glial cells, both of which were shown to derive from proliferated cells by BrdU uptake. This study indicates that progenitor cells isolated from the postnatal enteric nervous system might have the potential to serve as a source for a cell based therapy for neurogastrointestinal motility disorders. However, further studies are necessary to provide evidence that the generated cells are capable to positively influence the motility of the diseased gastrointestinal tract.
Collapse
|
13
|
Abstract
The enteric nervous system is vulnerable to a range of congenital and acquired disorders that disrupt the function of its neurons or lead to their loss. The resulting enteric neuropathies are some of the most challenging clinical conditions to manage. Neural stem cells offer the prospect of a cure given their potential ability to replenish missing or dysfunctional neurons. This article discusses diseases that might be targets for stem cell therapies and the barriers that could limit treatment application. We explore various sources of stem cells and the proof of concept for their use. The critical steps that remain to be addressed before these therapies can be used in patients are also discussed. Key milestones include the harvesting of neural stem cells from the human gut and the latest in vivo transplantation studies in animals. The tremendous progress in the field has brought experimental studies exploring the potential of stem cell therapies for the management of enteric neuropathies to the cusp of clinical application.
Collapse
Affiliation(s)
- Alan J Burns
- Neural Development and Gastroenterology Units, Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Nikhil Thapar
- 1] Neural Development and Gastroenterology Units, Birth Defects Research Centre, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK. [2] Division of Neurogastroenterology and Motility, Department of Paediatric Gastroenterology, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK
| |
Collapse
|
14
|
Hetz S, Acikgoez A, Voss U, Nieber K, Holland H, Hegewald C, Till H, Metzger R, Metzger M. In vivo transplantation of neurosphere-like bodies derived from the human postnatal and adult enteric nervous system: a pilot study. PLoS One 2014; 9:e93605. [PMID: 24699866 PMCID: PMC3974735 DOI: 10.1371/journal.pone.0093605] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/06/2014] [Indexed: 11/24/2022] Open
Abstract
Recent advances in the in vitro characterization of human adult enteric neural progenitor cells have opened new possibilities for cell-based therapies in gastrointestinal motility disorders. However, whether these cells are able to integrate within an in vivo gut environment is still unclear. In this study, we transplanted neural progenitor-containing neurosphere-like bodies (NLBs) in a mouse model of hypoganglionosis and analyzed cellular integration of NLB-derived cell types and functional improvement. NLBs were propagated from postnatal and adult human gut tissues. Cells were characterized by immunohistochemistry, quantitative PCR and subtelomere fluorescence in situ hybridization (FISH). For in vivo evaluation, the plexus of murine colon was damaged by the application of cationic surfactant benzalkonium chloride which was followed by the transplantation of NLBs in a fibrin matrix. After 4 weeks, grafted human cells were visualized by combined in situ hybridization (Alu) and immunohistochemistry (PGP9.5, GFAP, SMA). In addition, we determined nitric oxide synthase (NOS)-positive neurons and measured hypertrophic effects in the ENS and musculature. Contractility of treated guts was assessed in organ bath after electrical field stimulation. NLBs could be reproducibly generated without any signs of chromosomal alterations using subtelomere FISH. NLB-derived cells integrated within the host tissue and showed expected differentiated phenotypes i.e. enteric neurons, glia and smooth muscle-like cells following in vivo transplantation. Our data suggest biological effects of the transplanted NLB cells on tissue contractility, although robust statistical results could not be obtained due to the small sample size. Further, it is unclear, which of the NLB cell types including neural progenitors have direct restoring effects or, alternatively may act via 'bystander' mechanisms in vivo. Our findings provide further evidence that NLB transplantation can be considered as feasible tool to improve ENS function in a variety of gastrointestinal disorders.
Collapse
Affiliation(s)
- Susan Hetz
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Clinic-oriented Therapy Assessment Unit, Leipzig, Germany
| | - Ali Acikgoez
- Department of General and Visceral Surgery, St. George’s Hospital Leipzig, Leipzig, Germany
| | - Ulrike Voss
- Institute of Pharmacy, Pharmacology for Natural Sciences, University of Leipzig, Leipzig, Germany
| | - Karen Nieber
- Institute of Pharmacy, Pharmacology for Natural Sciences, University of Leipzig, Leipzig, Germany
| | - Heidrun Holland
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Cindy Hegewald
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Holger Till
- Department of Pediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Roman Metzger
- Department of Pediatrics and Adolescent Medicine, Salzburg County Hospital, Salzburg, Austria
| | - Marco Metzger
- Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
- Tissue Engineering and Regenerative Medicine, Fraunhofer IGB Project Group: Regenerative Technologies for Oncology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Zakhem E, Raghavan S, Bitar KN. Neo-innervation of a bioengineered intestinal smooth muscle construct around chitosan scaffold. Biomaterials 2013; 35:1882-9. [PMID: 24315576 DOI: 10.1016/j.biomaterials.2013.11.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/17/2013] [Indexed: 12/17/2022]
Abstract
Neuromuscular disorders of the gut result in disturbances in gastrointestinal transit. The objective of this study was to evaluate the neo-innervation of smooth muscle in an attempt to restore lost innervation. We have previously shown the potential use of composite chitosan scaffolds as support for intestinal smooth muscle constructs. However, the constructs lacked neuronal component. Here, we bioengineered innervated colonic smooth muscle constructs using rabbit colon smooth muscle and enteric neural progenitor cells. We also bioengineered smooth muscle only tissue constructs using colonic smooth muscle cells. The constructs were placed next to each other around tubular chitosan scaffolds and left in culture. Real time force generation conducted on the intrinsically innervated smooth muscle constructs showed differentiated functional neurons. The bioengineered smooth muscle only constructs became neo-innervated. The neo-innervation results were confirmed by immunostaining assays. Chitosan supported (1) the differentiation of neural progenitor cells in the constructs and (2) the neo-innervation of non-innervated smooth muscle around the same scaffold.
Collapse
Affiliation(s)
- Elie Zakhem
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, United States
| | - Shreya Raghavan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, United States
| | - Khalil N Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, United States.
| |
Collapse
|
16
|
Osman AM, Zhou K, Zhu C, Blomgren K. Transplantation of enteric neural stem/progenitor cells into the irradiated young mouse hippocampus. Cell Transplant 2013; 23:1657-71. [PMID: 24152680 DOI: 10.3727/096368913x674648] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Radiotherapy is an effective treatment for brain tumors but often results in cognitive deficits in survivors. Transplantation of embryonic or brain-derived neural stem/progenitor cells (BNSPCs) ameliorated cognitive impairment after irradiation (IR) in animal models. However, such an approach in patients requires a clinically relevant source of cells. We show for the first time the utilization of enteric neural stem/progenitor cells (ENSPCs) from the postnatal intestinal wall as a source of autologous cells for brain repair after injury caused by IR. Cells were isolated from the intestinal wall and propagated in vitro for 1 week. Differentiation assays showed that ENSPCs are multipotent and generated neurons, astrocytes, and myofibroblasts. To investigate whether ENSPCs can be used in vivo, postnatal day 9 mice were subjected to a single moderate irradiation dose (6 or 8 Gy). Twelve days later, mice received an intrahippocampal injection of syngeneic ENSPCs. Four weeks after transplantation, 0.5% and 1% of grafted ENSPCs were detected in the dentate gyrus of sham and irradiated animals, respectively, and only 0.1% was detected after 16 weeks. Grafted ENSPCs remained undifferentiated but failed to restore IR-induced loss of BNSPCs and the subsequent impaired growth of the dentate gyrus. We observed microglia activation, astrogliosis, and loss of granule neurons associated with grafted ENSPC clusters. Transplantation of ENSPCs did not ameliorate IR-induced impaired learning and memory. In summary, while autologous ENSPC grafting to the brain worked technically, even in the absence of immunosuppression, the protocols need to be modified to improve survival and integration.
Collapse
Affiliation(s)
- Ahmed M Osman
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
17
|
Hotta R, Stamp LA, Foong JPP, McConnell SN, Bergner AJ, Anderson RB, Enomoto H, Newgreen DF, Obermayr F, Furness JB, Young HM. Transplanted progenitors generate functional enteric neurons in the postnatal colon. J Clin Invest 2013; 123:1182-91. [PMID: 23454768 DOI: 10.1172/jci65963] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/11/2012] [Indexed: 01/11/2023] Open
Abstract
Cell therapy has the potential to treat gastrointestinal motility disorders caused by diseases of the enteric nervous system. Many studies have demonstrated that various stem/progenitor cells can give rise to functional neurons in the embryonic gut; however, it is not yet known whether transplanted neural progenitor cells can migrate, proliferate, and generate functional neurons in the postnatal bowel in vivo. We transplanted neurospheres generated from fetal and postnatal intestinal neural crest-derived cells into the colon of postnatal mice. The neurosphere-derived cells migrated, proliferated, and generated neurons and glial cells that formed ganglion-like clusters within the recipient colon. Graft-derived neurons exhibited morphological, neurochemical, and electrophysiological characteristics similar to those of enteric neurons; they received synaptic inputs; and their neurites projected to muscle layers and the enteric ganglia of the recipient mice. These findings show that transplanted enteric neural progenitor cells can generate functional enteric neurons in the postnatal bowel and advances the notion that cell therapy is a promising strategy for enteric neuropathies.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The current management of Hirschsprung's disease (HSCR) is still associated with significant long-term morbidities despite on-going refinements in surgical care. Over the course of the past 20 years, significant inroads have been made in our understanding of the development of the enteric nervous system and what factors are responsible for the development of HSCR. This has prompted increased interest in the possibility of using this knowledge to develop new alternative and adjunctive therapies for HSCR. The aim of this review is to provide an overview of the current progress being made toward the development of future therapies to improve the outcome for children with HSCR.
Collapse
Affiliation(s)
- David J Wilkinson
- Department of Paediatric Surgery, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | | | | |
Collapse
|
19
|
Stem cells for GI motility disorders. Curr Opin Pharmacol 2011; 11:617-23. [PMID: 22056114 DOI: 10.1016/j.coph.2011.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/23/2011] [Indexed: 12/23/2022]
Abstract
Currently available therapies for gastrointestinal motility conditions are often inadequate. Recent scientific advances, however, have facilitated the identification of neural stem cells as novel tools for cellular replenishment. Such cells can be generated from a number of tissue sources including the gut itself. Neural stem cells can readily be harvested from postnatal human gut including by conventional endoscopy, and in experimental transplantation studies appear capable of generating a neo-Enteric Nervous System. Current initiatives are addressing pre-clinical proof of concept studies in vivo utilising animal models of disease. Although definitive cell replenishment therapies for gut motility disorders appear to be an exciting and realistic prospect, even in the short-term, a number of challenges remain to be addressed before definitive clinical application.
Collapse
|
20
|
Pan WK, Zheng BJ, Gao Y, Qin H, Liu Y. Transplantation of neonatal gut neural crest progenitors reconstructs ganglionic function in benzalkonium chloride-treated homogenic rat colon. J Surg Res 2011; 167:e221-30. [PMID: 21392806 DOI: 10.1016/j.jss.2011.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/24/2010] [Accepted: 01/07/2011] [Indexed: 01/03/2023]
Abstract
BACKGROUND To value the possibility and the future feasibility of the use of autograft cells transplantation in disorders of the enteric neural system, we postulate that isolated neonatal nongenetically modified neural crest progenitors could survive and differentiate into neurons and glia in homogenic denervated rats and, therefore, restore partial intestinal function after transplantation. METHODS Neural crest progenitors were isolated from neonatal rats. After passages, the cells were labeled with CM-DiI. The labeled cells were then delivered into the muscular distal denervated colon of rats whose neural plexuses were eliminated using benzalkonium chloride. The treated colons of recipients were harvested at 1, 4, and 8 wk, and identified by immunofluorescent staining. The physiologic and functional improvements on treated colons were well examined after transplantation 8 wk. RESULTS Progenitors could generate neurospheres and differentiate into neurons and glia in vitro. After transplantation, red fluorescent cells were observed in the injected tissue for up to 8 wk, and they differentiated into neurons and glia in the host colon. Functional examinations indicated that symptoms and intestinal dysfunction of the denervated model were reversed. CONCLUSIONS We provide herein further evidence that autologous cell transplantation is a feasible therapy for enteric nervous system disorders.
Collapse
Affiliation(s)
- Wei Kang Pan
- Department of Pediatric Surgery, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | | | | | | | | |
Collapse
|
21
|
Hotta R, Natarajan D, Thapar N. Potential of cell therapy to treat pediatric motility disorders. Semin Pediatr Surg 2009; 18:263-73. [PMID: 19782309 DOI: 10.1053/j.sempedsurg.2009.07.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gut motility disorders represent a significant challenge in clinical management with current palliative approaches failing to overcome disease and treatment-related morbidity. The recent progress with stem cells to restore missing or defective elements of the gut neuromusculature offers new hope for potential cure. Focusing on enteric neuropathies such as Hirschsprung's disease, the review discusses the progress that has been made in the sourcing of putative stem cells and the studies into their biology and therapeutic potential. It also explores the practical challenges that must be overcome before stem cell-based therapies can be applied in the clinical arena. Although many obstacles remain, the speed of advancement of the enteric stem cell field suggests that such therapies are on the horizon.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Anatomy & Cell Biology, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
22
|
|