1
|
Zhao Y, Wang L, Xie M, Rao W. Progress in the diagnosis and treatment of graft fibrosis after liver transplantation. PORTAL HYPERTENSION & CIRRHOSIS 2024; 3:22-30. [DOI: 10.1002/poh2.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/27/2023] [Indexed: 01/04/2025]
Abstract
AbstractLiver transplantation (LT) is considered one of the best treatments for patients with end‐stage liver diseases. However, some patients with no significant clinical manifestations or abnormal laboratory tests still experience graft fibrosis during postoperative follow‐up, which is often recognized by graft histopathology. Graft fibrosis can lead to graft dysfunction, thereby reducing the survival time of the recipient and even requiring re‐transplantation. Currently, noninvasive methods are widely applied in the assessment of hepatic and allograft fibrosis. Although both noninvasive diagnostic models based on laboratory examination indicators and elastography technology that can quantify liver stiffness have some value in the evaluation of fibrosis, the diagnostic accuracy and characteristics of these various methods vary and cannot replace liver biopsy completely. In recent years, some liver‐protective drugs and proprietary Chinese traditional medicines have been proven to delay or reverse chronic liver fibrosis. Nevertheless, their efficacy and safety for LT recipients need to be further verified. This article reviews the diagnosis and treatment of graft fibrosis after LT to provide a reference for improving the overall survival rate of LT recipients.
Collapse
Affiliation(s)
- Youwei Zhao
- Department of Gastroenterology Medical College of Qingdao University Qingdao Shandong China
| | - Lijun Wang
- Department of Gastroenterology Medical College of Qingdao University Qingdao Shandong China
| | - Man Xie
- Department of Gastroenterology The Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Wei Rao
- Division of Hepatology, Liver Disease Center The Affiliated Hospital of Qingdao University Qingdao Shandong China
- Department of Organ Transplantation Center The Affiliated Hospital of Qingdao University Qingdao Shandong China
| |
Collapse
|
2
|
Feng R, Du W, Lui P, Zhang J, Liu Y. CAPN2 acts as an indicator of hepatitis B virus to induce hepatic fibrosis. J Cell Biochem 2019; 121:2428-2436. [PMID: 31680308 DOI: 10.1002/jcb.29465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
This study is aimed to investigate whether calpain 2 (CAPN2) serves as an indicator of the hepatitis B virus (HBV) to induce hepatic fibrosis. Differentially-expressed genes (DEGs) in HBV-induced hepatic fibrosis and normal liver tissues were analyzed, and signal pathway which was analyzed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis using DEGs. Next, the gene-related network map was constructed using the Search Tool for the Retrieval of Interacting Genes. Moreover, CAPN2 protein expression, level of hepatic fibrosis, CAPN2 messenger RNA level, and protein levels of CAPN2, a-SAM, COL3A1, COL1A1, and MAPK1 were determined using Immunohistochemistry (IHC), hematoxylin and eosin, RT-qPCR, and western blot (WB), respectively. There were 420 DEGs screened in HBV-induced hepatic fibrosis and normal liver tissues, among which, 373 were significantly upregulated and 47 were obviously downregulated. KEGG analysis showed that the upregulated DEGs were mainly concentrated in extracellular matrix-receptor interaction, protein digestion, and absorption signaling pathways. The network diagram analysis showed that the DEGs, such as CAPN2, ITGAV, and CCR2, play the key role in the DEG network map, and CAPN2 related to hepatic fibrosis via MAPK1. The increased CAPN2 expression and obvious hepatic fibrosis was displayed in the HBV-induced hepatic fibrosis tissues. In addition, HBV could induce CAPN2 expression, and the interference of CAPN2 could inhibit the expression of hepatic fibrosis markers, including a-SAM, COL3A1, COL1A1, and MAPK1. CAPN2 is regarded as a biomarker of hepatic fibrosis induced by HBV.
Collapse
Affiliation(s)
- Rui Feng
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Weixing Du
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Ping Lui
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Zhang
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yanqing Liu
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
3
|
Kimer N, Gudmann NS, Pedersen JS, Møller S, Nielsen MJ, Leeming DJ, Karsdal MA, Møller HJ, Bendtsen F, Grønbæk H. No effect of rifaximin on soluble CD163, mannose receptor or type III and IV neoepitope collagen markers in decompensated cirrhosis: Results from a randomized, placebo controlled trial. PLoS One 2018; 13:e0203200. [PMID: 30183743 PMCID: PMC6124759 DOI: 10.1371/journal.pone.0203200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Macrophages play a significant role in chronic liver disease as reflected by elevated soluble (s)CD163 and mannose receptor (sMR) levels and associated with liver disease severity and prognosis. Extracellular matrix remodelling associated with fibrogenesis may be affected by systemic inflammation induced by bacterial translocation. Therefore, we aimed to investigate the effect of rifaximin-α, an antibiotic with effect on gut bacteria, on sCD163, sMR, and collagen metabolites. METHODS Fifty-four clinically stable patients with decompensated cirrhosis were randomized to 4 weeks treatment with rifaximin-α (n = 36) or placebo (n = 18). Macrophage markers sCD163, sMR and markers of collagen fibrogenesis (C3M and C4M) and formation (PRO-C3 and P4NPS7) were analysed in plasma before and after treatment. RESULTS sCD163 and sMR levels were associated with liver disease severity (MELD score, sCD163 rho = 0.47, p<0.001 and sMR rho = 0.37, p = 0.005). There was no effect of Rifaximin-α on sCD163 levels (median (range) sCD163 5.64(2.02 to 10.8) at baseline versus 4.42(1.98 to 8.92) at follow-up in the rifaximin-α group and 4.85 (2.29 to 12.1) at baseline versus 4.32 (1.98 to 12.4) at follow-up in the placebo-group), p = 0.34); nor sMR levels, p = 0.34. Also in patients with elevated lipopolysaccharide binding protein (> 5.9 μg/ml, 38 patients) there was no effect of rifaximin-α on sCD163 (p = 0.49) or sMR levels (p = 0.32). CONCLUSION We confirmed that macrophage activation markers sCD163 and sMR are directly associated to liver disease severity (MELD score). However, rifaximin-α has no effect on sCD163, sMR or collagen markers in decompensated cirrhosis and does therefore not seem to interfere with macrophage activation or fibrogenesis.
Collapse
Affiliation(s)
- Nina Kimer
- Gastro Unit, Medical Division, Copenhagen University Hospital Amager Hvidovre, Hvidovre, Denmark
- Centre of Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Julie Steen Pedersen
- Gastro Unit, Medical Division, Copenhagen University Hospital Amager Hvidovre, Hvidovre, Denmark
| | - Søren Møller
- Centre of Diagnostic Imaging and Research, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | | | | | - Holger Jon Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Medical Division, Copenhagen University Hospital Amager Hvidovre, Hvidovre, Denmark
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Voutilainen SH, Kosola SK, Tervahartiala TI, Sorsa TA, Jalanko HJ, Pakarinen MP. Liver and serum expression of matrix metalloproteinases in asymptomatic pediatric liver transplant recipients. Transpl Int 2016; 30:124-133. [DOI: 10.1111/tri.12879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/29/2016] [Accepted: 10/19/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Silja H. Voutilainen
- Pediatric Surgery and Pediatric Transplantation Surgery; Pediatric Liver and Gut Research Group; Children's Hospital; Helsinki University Central Hospital and University of Helsinki; Helsinki Finland
| | - Silja K. Kosola
- Pediatric Surgery and Pediatric Transplantation Surgery; Pediatric Liver and Gut Research Group; Children's Hospital; Helsinki University Central Hospital and University of Helsinki; Helsinki Finland
| | - Taina I. Tervahartiala
- Department of Oral and Maxillofacial Diseases; Institute of Dentistry; University of Helsinki and Helsinki University Central Hospital; Helsinki Finland
| | - Timo A. Sorsa
- Department of Oral and Maxillofacial Diseases; Institute of Dentistry; University of Helsinki and Helsinki University Central Hospital; Helsinki Finland
| | - Hannu J. Jalanko
- Pediatric Nephrology and Transplantation; Children's Hospital; Helsinki University Central Hospital and University of Helsinki; Helsinki Finland
| | - Mikko P. Pakarinen
- Pediatric Surgery and Pediatric Transplantation Surgery; Pediatric Liver and Gut Research Group; Children's Hospital; Helsinki University Central Hospital and University of Helsinki; Helsinki Finland
| |
Collapse
|
5
|
Cannistrà M, Ruggiero M, Zullo A, Gallelli G, Serafini S, Maria M, Naso A, Grande R, Serra R, Nardo B. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. Int J Surg 2016; 33 Suppl 1:S57-70. [PMID: 27255130 DOI: 10.1016/j.ijsu.2016.05.050] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatic ischemia reperfusion injury (IRI) is not only a pathophysiological process involving the liver, but also a complex systemic process affecting multiple tissues and organs. Hepatic IRI can seriously impair liver function, even producing irreversible damage, which causes a cascade of multiple organ dysfunction. Many factors, including anaerobic metabolism, mitochondrial damage, oxidative stress and secretion of ROS, intracellular Ca(2+) overload, cytokines and chemokines produced by KCs and neutrophils, and NO, are involved in the regulation of hepatic IRI processes. Matrix Metalloproteinases (MMPs) can be an important mediator of early leukocyte recruitment and target in acute and chronic liver injury associated to ischemia. MMPs and neutrophil gelatinase-associated lipocalin (NGAL) could be used as markers of I-R injury severity stages. This review explores the relationship between factors and inflammatory pathways that characterize hepatic IRI, MMPs and current pharmacological approaches to this disease.
Collapse
Affiliation(s)
- Marco Cannistrà
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Michele Ruggiero
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Alessandra Zullo
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Giuseppe Gallelli
- Department of Emergency, Pugliese-Ciaccio Hospital, Catanzaro, Italy.
| | - Simone Serafini
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Mazzitelli Maria
- Department of Primary Care, Provincial Health Authority of Vibo Valentia, 89900 Vibo Valentia, Italy.
| | - Agostino Naso
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Raffaele Grande
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Bruno Nardo
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy; Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Italy.
| |
Collapse
|
6
|
Leeming DJ, Karsdal MA, Byrjalsen I, Bendtsen F, Trebicka J, Nielsen MJ, Christiansen C, Møller S, Krag A. Novel serological neo-epitope markers of extracellular matrix proteins for the detection of portal hypertension. Aliment Pharmacol Ther 2013; 38:1086-96. [PMID: 24099470 PMCID: PMC3935409 DOI: 10.1111/apt.12484] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/08/2013] [Accepted: 08/21/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The hepatic venous pressure gradient (HVPG) is an invasive, but important diagnostic and prognostic marker in cirrhosis with portal hypertension (PHT). During cirrhosis, remodelling of fibrotic tissue by matrix metalloproteinases (MMPs) is a permanent process generating small fragments of degraded extracellular matrix (ECM) proteins known as neoepitopes, which are then released into the circulation. AIM To investigate their potential as plasma markers for detection of PHT. METHODS Ninety-four patients with alcoholic cirrhosis and 20 liver-healthy controls were included. Clinical and laboratory data of the patients were collected. All patients received HVPG measurement with blood sampling. In these samples, the following degradation or formation markers were measured: C1M (type I-collagen), C3M and PRO-C3 (type III collagen), C4M and P4NP 7S (type IV collagen), C5M (type V collagen), C6M (type VI collagen), BGM (biglycan), ELM (elastin), CRPM (CRP). RESULTS All ECM markers except for CRPM correlated significantly with HVPG. Interestingly, C4M, C5M and ELM levels were significantly higher in patients with HVPG >10 mmHg. Multiple regression analysis identified PRO-C3, C6M and ELM as significant determinants, while the models A and B including PRO-C3, ELM, C6M and model for end-stage liver disease (MELD) provided better description of PHT (r = 0.75, P < 0.0001). The models provided odds ratios of >100 for having clinical significant PHT. CONCLUSIONS These novel non-invasive extracellular matrix markers reflect the degree of liver dysfunction. The different degrees of portal hypertension correlated with these circulating neoepitopes. Using a single blood sample, these neoepitopes in combination with MELD detect the level of portal hypertension.
Collapse
Affiliation(s)
- D J Leeming
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - M A Karsdal
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - I Byrjalsen
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - F Bendtsen
- Department of Gastroenterology Faculty of Health Sciences, Hvidovre Hospital, University of CopenhagenCopenhagen, Denmark
| | - J Trebicka
- Department of Internal Medicine I, University of BonnBonn, Germany
| | - M J Nielsen
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - C Christiansen
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - S Møller
- Department of Clinical Physiology Faculty of Health Sciences, Hvidovre Hospital, University of CopenhagenCopenhagen, Denmark
| | - A Krag
- Department of Gastroenterology Faculty of Health Sciences, Hvidovre Hospital, University of CopenhagenCopenhagen, Denmark,Department of Gastroenterology Odense University Hospital, University of Southern DenmarkOdense, Denmark
| |
Collapse
|
7
|
Genovese F, Barascuk N, Larsen L, Larsen MR, Nawrocki A, Li Y, Zheng Q, Wang J, Veidal SS, Leeming DJ, Karsdal MA. Biglycan fragmentation in pathologies associated with extracellular matrix remodeling by matrix metalloproteinases. FIBROGENESIS & TISSUE REPAIR 2013; 6:9. [PMID: 23635022 PMCID: PMC3651402 DOI: 10.1186/1755-1536-6-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/19/2013] [Indexed: 01/23/2023]
Abstract
Background The proteoglycan biglycan (BGN) is involved in collagen fibril assembly and its fragmentation is likely to be associated with collagen turnover during the pathogenesis of diseases which involve dysregulated extracellular matrix remodeling (ECMR), such as rheumatoid arthritis (RA) and liver fibrosis. The scope of the present study was to develop a novel enzyme-linked immunosorbent assay (ELISA) for the measurement of a MMP-9 and MMP-12-generated biglycan neo-epitope and to test its biological validity in a rat model of RA and in two rat models of liver fibrosis, chosen as models of ECMR. Results Biglycan was cleaved in vitro by MMP-9 and -12 and the 344′YWEVQPATFR′353 peptide (BGM) was chosen as a potential neo-epitope. A technically sound competitive ELISA for the measurement of BGM was generated and the assay was validated in a bovine cartilage explant culture (BEX), in a collagen induced model of rheumatoid arthritis (CIA) and in two different rat models of liver fibrosis: the carbon tetrachloride (CCL4)-induced fibrosis model, and the bile duct ligation (BDL) model. Significant elevation in serum BGM was found in CIA rats compared to controls, in rats treated with CCL4 for 16 weeks and 20 weeks compared to the control groups as well as in all groups of rats subject to BDL compared with sham operated groups. Furthermore, there was a significant correlation of serum BGM levels with the extent of liver fibrosis determined by the Sirius red staining of liver sections in the CCL4 model. Conclusion We demonstrated that the specific tissue remodeling product of MMPs-degraded biglycan, namely the neo-epitope BGM, is correlated with pathological ECMR. This assay represents both a novel marker of ECM turnover and a potential new tool to elucidate biglycan role during the pathological processes associated with ECMR.
Collapse
Affiliation(s)
- Federica Genovese
- Nordic Bioscience A/S, Herlev Hovedgade 207, Herlev, DK-2730, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Trotta MDR, Cajaiba DM, Parra OM, Dagli MLZ, Hernandez-Blazquez FJ. Parenteral solution of nutritional hepatotrophic factors improves regeneration in thioacetamide-induced cirrhotic livers after partial hepatectomy. Toxicol Pathol 2013; 42:414-21. [PMID: 23615430 DOI: 10.1177/0192623313486316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Liver resection is a suitable option for the treatment of certain hepatic conditions, particularly hepatocarcinomas, in patients with cirrhosis. However, this disease impairs liver regeneration, which increases the risk of liver failure and postoperative death. Supportive treatments for regeneration of the remaining liver may be useful for the recovery of these patients. We demonstrated that nutritional hepatotrophic factors (NHF) is an effective regenerative stimulus for cirrhotic livers in rats subjected to partial hepatectomy (PH). The rats with thioacetamide-induced cirrhosis were subjected to PH, and they were divided into 2 groups. One group received intraperitoneal administration of NHF, and the other group received saline solution. After 12 days, biometric data, collagen content, hepatocyte regeneration (proliferation cell nuclear antigen immunochemistry), and profibrotic gene expression (Collagen-α1, matrix metalloproteinase 2, tissue inhibitor of metalloproteinase 1, and transforming growth factor beta 1) were assessed. The results indicated that the rats treated with NHF after PH had an increased liver size, a reduced amount of collagen, and a higher hepatocyte proliferation index compared with the rats that underwent PH alone. In addition, collagen-α1 gene expression was decreased in the NHF-treated rats. Thus, postoperative improvement in the liver morphology following NHF treatment may cause a significant decrease in the risk of liver failure and mortality after hepatic resection.
Collapse
Affiliation(s)
- Mauricio de Rosa Trotta
- 1Departamento de Patologia e Medicina Legal, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | |
Collapse
|
9
|
Leeming DJ, Byrjalsen I, Jiménez W, Christiansen C, Karsdal MA. Protein fingerprinting of the extracellular matrix remodelling in a rat model of liver fibrosis--a serological evaluation. Liver Int 2013; 33:439-47. [PMID: 23279004 DOI: 10.1111/liv.12044] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/13/2012] [Accepted: 10/27/2012] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIM We investigated nine novel biomarkers of extracellular matrix (ECM) remodelling in a rat model of liver fibrosis. METHODS Liver fibrosis was induced in 52 male Wistar rats by inhalation of carbon tetrachloride and the level of hepatic fibrosis was assessed by Sirius red staining compared with controls. The novel serum biochemical markers assessed in the model were type I-(C1M), type III-(C3M), type IV-(C4M) and type VI-(C6M) collagen, citrullinated vimentin (VICM) and biglycan (BGM) all protein fragments generated by matrix metalloproteinases; and formation markers of type III-(P3NP), type VI (P4NP 7S) and type V (P5CP) collagen; hepatic mRNA type I collagen alpha-1 chain levels, serum potassium, sodium, osmolarity, alanine aminotransferase, lactate dehydrogenase, albumin and creatinine. RESULTS Stratification of the CCl(4) -treated rats according to total hepatic collagen showed that the degradation markers were significantly elevated in mild to severe fibrosis except for C6M which was also elevated in early fibrosis (P < 0.05). The highest Z-scores in early and moderate fibrosis were provided by P4NP 7S and alanine aminotransferase. All nine markers of ECM remodelling were highly related to the extent of liver fibrosis induced by CCl(4) . The novel collagen formation marker, P4NP 7S, was reliable for the detection of early fibrosis, while the combination of the two markers, C6M and P5CP provided the best correlation with hepatic fibrosis in all fibrosis levels. CONCLUSION As the markers can be used for translational science, these markers may provide valuable information for the evaluation of liver fibrosis in clinical settings.
Collapse
Affiliation(s)
- Diana J Leeming
- Nordic Bioscience, Fibrosis Biology and Biomarkers, Herlev, Denmark.
| | | | | | | | | |
Collapse
|
10
|
Zhang S, Chen D, Huang C, Bao J, Wang Z. Expression of HGF, MMP-9 and TGF-β1 in the CSF and cerebral tissue of adult rats with hydrocephalus. Int J Neurosci 2013; 123:392-9. [PMID: 23270462 DOI: 10.3109/00207454.2012.762363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECT The hepatocyte growth factor (HGF), matrix metallopeptidase-9 (MMP-9) and transforming growth factor-β1 (TGF-β1) are important cytokines with modulatory actions in the nervous system. In this study, we attempted to investigate the role and expression of HGF, MMP-9 and TGF-β1 in the cerebral tissue and cerebrospinal fluid (CSF) of adult rats with hydrocephalus induced via intraventricular kaolin injection. METHODS Adult male Sprague-Dawley rats were randomly divided into two groups: control group (n = 12) and experimental group (n = 20). Kaolin was injected into the lateral ventricle of experimental animals. Control rats underwent the same procedure but received sterile saline injection instead of kaolin. Magnetic resonance imaging was used to assess ventricle size. The CSF was studied by enzyme-linked immunosorbent assay and the excised brains were studied by reverse-transcription polymerase chain reaction and immunohistochemical analyses to measure the messenger RNA and protein expression level of HGF, MMP-9 and TGF-β1. RESULTS Hydrocephalus was induced in all the rats after kaolin injection into the lateral ventricle. After 2 weeks, the expressions of HGF, MMP-9 and TGF-β1 in the CSF and cerebral tissue were significantly increased in the experimental group compared with the control group. CONCLUSIONS This results indicated that HGF, MMP-9 and TGF-β1 may participate in the formation and prognosis of hydrocephalus after kaolin induction.
Collapse
Affiliation(s)
- Shaolin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | | | | | | | | |
Collapse
|
11
|
Veidal SS, Nielsen MJ, Leeming DJ, Karsdal MA. Phosphodiesterase inhibition mediates matrix metalloproteinase activity and the level of collagen degradation fragments in a liver fibrosis ex vivo rat model. BMC Res Notes 2012; 5:686. [PMID: 23249435 PMCID: PMC3541216 DOI: 10.1186/1756-0500-5-686] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 12/13/2012] [Indexed: 01/06/2023] Open
Abstract
Background Accumulation of extracellular matrix (ECM) and increased matrix metalloproteinase (MMP) activity are hallmarks of liver fibrosis. The aim of the present study was to develop a model of liver fibrosis combining ex vivo tissue culture of livers from CCl4 treated animals with an ELISA detecting a fragment of type III collagen generated in vitro by MMP-9 (C3M), known to be associated with liver fibrosis and to investigate cAMP modulation of MMP activity and liver tissue turnover in this model. Findings In vivo: Rats were treated for 8 weeks with CCl4/Intralipid. Liver slices were cultured for 48 hours. Levels of C3M were determined in the supernatants of slices cultured without treatment, treated with GM6001 (positive control) or treated with IBMX (phosphodiesterase inhibitor). Enzymatic activity of MMP-2 and MMP-9 were studied by gelatin zymography. Ex vivo: The levels of serum C3M increased 77% in the CCl4-treated rats at week 8 (p < 0.01); Levels of C3M increased significantly by 100% in fibrotic liver slices compared to controls after 48 hrs (p < 0.01). By adding GM6001 or IBMX to the media, C3M was restored to control levels. Gelatin zymography demonstrated CCl4-treated animals had highly increased MMP-9, but not MMP-2 activity, compared to slices derived from control animals. Conclusions We have combined an ex vivo model of liver fibrosis with measurement of a biochemical marker of collagen degradation in the condition medium. This technology may be used to evaluate the molecular process leading to structural fibrotic changes, as collagen species are the predominant structural part of fibrosis. These data suggest that modulation of cAMP may play a role in regulation of collagen degradation associated with liver fibrosis.
Collapse
|
12
|
Leeming DJ, Sand JM, Nielsen MJ, Genovese F, Martinez FJ, Hogaboam CM, Han MK, Klickstein LB, Karsdal MA. Serological investigation of the collagen degradation profile of patients with chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis. Biomark Insights 2012; 7:119-26. [PMID: 23012495 PMCID: PMC3448496 DOI: 10.4137/bmi.s9415] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In both chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), abnormally high collagen remodeling occurs within the lung tissue. Matrix metalloproteinase (MMP)-degraded type I, III, IV, V and VI collagen and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-degraded type III collagen were assessed in serum of patients diagnosed with mild COPD (n = 10) or IPF (n = 30), and healthy controls (n = 15). The collagen degradation markers C1M, C3M, C5M and C6M were significantly elevated in serum of both mild COPD and IPF patients, versus controls. C3A and C4M were only elevated in patients with mild COPD, compared with controls. The most reliable indicators of mild COPD versus controls were: C1M (area under the receiver-operating characteristics (AUROC = 0.94, P < 0.0001), C3M (AUROC = 0.95, P < 0.0001), and C5M (AUROC = 0.95, P < 0.0001). The most reliable markers for the diagnosis of IPF were achieved by C1M (AUROC = 0.90, P < 0.0001) and C3M (AUROC = 0.93, P < 0.0001). Collagen degradation was highly up-regulated in patients with IPF and mild COPD, indicating that degradation fragments of collagens are potential markers of pulmonary diseases. Interestingly, C4M and C3A were only elevated in patients with mild COPD, indicating that these markers could be used to distinguish between the two pathologies.
Collapse
|
13
|
Veidal SS, Larsen DV, Chen X, Sun S, Zheng Q, Bay-Jensen AC, Leeming DJ, Nawrocki A, Larsen MR, Schett G, Karsdal MA. MMP mediated type V collagen degradation (C5M) is elevated in ankylosing spondylitis. Clin Biochem 2012; 45:541-6. [PMID: 22382088 DOI: 10.1016/j.clinbiochem.2012.02.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 02/06/2012] [Accepted: 02/09/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Type V collagen has been demonstrated to control fibril formation. The aim of this study was to develop an ELISA capable of detecting a fragment of type V collagen generated by MMP-2/9 and to evaluate the assay as biomarker for ankylosing spondylitis (AS). DESIGN AND METHODS A fragment unique to type V collagen and generated by both MMP-2/9 cleaved at the amino acid position 1317 (C5M) was selected for ELISA development. 40 AS patients and 40 age-matched controls were evaluated. RESULTS An ELISA detecting C5M with inter- and intra-assay variations of 9.1% and 4.4% was developed. C5M levels were significantly higher in AS patients compared to controls, 229% (p<0.0001). The diagnostic AUC was 83%. CONCLUSIONS This ELISA is the first for detecting type V collagen degradation. AS patients had highly elevated levels of MMP mediated type V collagen degradation. The prognostic and diagnostic values need to be further investigated in additional clinical settings.
Collapse
|
14
|
Ničković V, Nikolić J, Kocić G, Ilić M, Djindjić B. COMPLICATIONS OF ALCOHOLIC LIVER DISEASE AND DIAGNOSTIC MARKERS. ACTA MEDICA MEDIANAE 2011. [DOI: 10.5633/amm.2011.0410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
15
|
Ničković V, Nikolić J, Kocić G, Ilić M, Đinđić B. KOMPLIKACIJE ALKOHOLNE BOLESTI JETRE I DIJAGNOSTIČKI MARKERI. ACTA MEDICA MEDIANAE 2011. [DOI: 10.5633/amm.2011.0410s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Leeming DJ, He Y, Veidal SS, Nguyen QHT, Larsen DV, Koizumi M, Segovia-Silvestre T, Zhang C, Zheng Q, Sun S, Cao Y, Barkholt V, Hägglund P, Bay-Jensen AC, Qvist P, Karsdal MA. A novel marker for assessment of liver matrix remodeling: An enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M). Biomarkers 2011; 16:616-28. [DOI: 10.3109/1354750x.2011.620628] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Veidal SS, Karsdal MA, Nawrocki A, Larsen MR, Dai Y, Zheng Q, Hägglund P, Vainer B, Skjøt-Arkil H, Leeming DJ. Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis. FIBROGENESIS & TISSUE REPAIR 2011; 4:22. [PMID: 21970406 PMCID: PMC3204229 DOI: 10.1186/1755-1536-4-22] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/05/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Collagen deposition and an altered matrix metalloproteinase (MMP) expression profile are hallmarks of fibrosis. Type IV collagen is the most abundant structural basement membrane component of tissue, which increases 14-fold during fibrogenesis in the liver. Proteolytic degradation of collagens by proteases produces small fragments, so-called neoepitopes, which are released systemically. Technologies investigating MMP-generated fragments of collagens may provide more useful information than traditional serological assays that crudely measure total protein. In the present study, we developed an ELISA for the quantification of a neoepitope generated by MMP degradation of type IV collagen and evaluated the association of this neoepitope with liver fibrosis in two animal models. METHODS Type IV collagen was degraded in vitro by a variety of proteases. Mass spectrometric analysis revealed more than 200 different degradation fragments. A specific peptide sequence, 1438'GTPSVDHGFL'1447 (CO4-MMP), in the α1 chain of type IV collagen generated by MMP-9 was selected for ELISA development. ELISA was used to determine serum levels of the CO4-MMP neoepitope in two rat models of liver fibrosis: inhalation of carbon tetrachloride (CCl4) and bile duct ligation (BDL). The levels were correlated to histological findings using Sirius red staining. RESULTS A technically robust assay was produced that is specific to the type IV degradation fragment, GTPSVDHGFL. CO4-MMP serum levels increased significantly in all BDL groups compared to baseline, with a maximum increase of 248% seen two weeks after BDL. There were no changes in CO4-MMP levels in sham-operated rats. In the CCl4 model, levels of CO4-MMP were significantly elevated at weeks 12, 16 and 20 compared to baseline levels, with a maximum increase of 88% after 20 weeks. CO4-MMP levels correlated to Sirius red staining results. CONCLUSION This ELISA is the first assay developed for assessment of proteolytic degraded type IV collagen, which, by enabling quantification of basement membrane degradation, could be relevant in investigating various fibrogenic pathologies. The CO4-MMP degradation fragment was highly associated with liver fibrosis in the two animal models studied.
Collapse
Affiliation(s)
- Sanne S Veidal
- Nordic Bioscience A/S, Herlev Hovedgade 207, DK-2730 Herlev, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Veidal SS, Karsdal MA, Vassiliadis E, Nawrocki A, Larsen MR, Nguyen QHT, Hägglund P, Luo Y, Zheng Q, Vainer B, Leeming DJ. MMP mediated degradation of type VI collagen is highly associated with liver fibrosis--identification and validation of a novel biochemical marker assay. PLoS One 2011; 6:e24753. [PMID: 21935455 PMCID: PMC3173456 DOI: 10.1371/journal.pone.0024753] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/16/2011] [Indexed: 01/06/2023] Open
Abstract
Background and Aims During fibrogenesis, in which excessive remodeling of the extracellular matrix occurs, both the quantity of type VI collagen and levels of matrix metalloproteinases, including MMP-2 and MMP-9, increase significantly. Proteolytic degradation of type VI collagen into small fragments, so-called neo-epitopes, may be specific biochemical marker of liver fibrosis. The aim of this study was to develop an ELISA detecting a fragment of type VI collagen generated by MMP-2 and MMP-9, and evaluate this assay in two preclinical models of liver fibrosis. Methods Mass spectrometric analysis of cleaved type VI collagen revealed a large number of protease-generated neo-epitopes. A fragment unique to type VI collagen generated by MMP-2 and MMP-9 was selected for ELISA development. The CO6-MMP assay was evaluated in two rat models of liver fibrosis: bile duct ligation (BDL) and carbon tetrachloride (CCl4)-treated rats. Results Intra- and inter-assay variation was 4.1% and 10.1% respectively. CO6-MMP levels were significantly elevated in CCl4-treated rats compared to vehicle-treated rats at weeks 12 (mean 30.9 ng/mL vs. 12.8 ng/mL, p = 0.002); week 16 (mean 34.0 ng/mL vs. 13.7 ng/mL, p = 0.0018); and week 20 (mean 35.3 ng/mL vs. 13.3 ng/mL, p = 0.0033) with a tight correlation between hepatic collagen content and serum levels of CO6-MMP (R2 = 0.58, p<0.0001) in CCl4- treated rats. In BDL rats, serum levels of CO6-MMP were significantly elevated compared to the levels in sham-operated animals both at 2 weeks (mean 29.5 ng/mL vs. 14.2 ng/mL, p = 0.0001) and 4 weeks (mean 33.0 ng/mLvs. 11.8 ng/mL, p = 0.0003). Conclusions This novel ELISA is the first assay enabling assessment of MMP degraded type VI collagen, allowing quantification of type VI collagen degradation, which would be relevant for different pathologies. The marker was highly associated with liver fibrosis in two liver fibrosis animal models, suggesting type VI turnover to be a central player in fibrogenesis.
Collapse
|
19
|
Singh R, Srivastava P, Srivastava A, Mittal RD. Matrix metalloproteinase (MMP-9 and MMP-2) gene polymorphisms influence allograft survival in renal transplant recipients. Nephrol Dial Transplant 2010; 25:3393-3401. [DOI: 10.1093/ndt/gfq174] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
20
|
Barascuk N, Veidal SS, Larsen L, Larsen DV, Larsen MR, Wang J, Zheng Q, Xing R, Cao Y, Rasmussen LM, Karsdal MA. A novel assay for extracellular matrix remodeling associated with liver fibrosis: An enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin Biochem 2010; 43:899-904. [PMID: 20380828 DOI: 10.1016/j.clinbiochem.2010.03.012] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 02/18/2010] [Accepted: 03/21/2010] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Accumulation of extracellular matrix (ECM) components and increased matrix-metalloprotease (MMPs) activity are hallmarks of fibrosis. We developed an ELISA for quantification of MMP-9 derived collagen type III (CO3) degradation. DESIGN AND METHODS A monoclonal antibody targeting a specific MMP-9 cleaved fragment of CO3 was used for development of a competitive ELISA. The assay was investigated in serum and tissues from bile duct ligated rats (BDL). RESULTS The ELISA showed no cross-reaction with either intact CO3, or other collagens. The intra- and inter-assay CV were below 10%. Liver fibrosis was demonstrated in BDL animals by semi quantitative scoring (P<0.0001). Serum levels of CO3-610 increased 2.5 fold in BDL animals (P<0.001). The CO3-610 levels were 5 fold higher in ex vivo cultures of fibrotic livers compared to controls (P<0.001). CONCLUSION We have developed a novel ELISA for measuring a specific fragment CO3 generated by MMP-9 important in pathogenesis of liver fibrosis.
Collapse
|
21
|
Rödder S, Scherer A, Körner M, Eisenberger U, Hertig A, Raulf F, Rondeau E, Marti HP. Meta-analyses qualify metzincins and related genes as acute rejection markers in renal transplant patients. Am J Transplant 2010; 10:286-97. [PMID: 19958327 DOI: 10.1111/j.1600-6143.2009.02928.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Definition of acute renal allograft rejection (AR) markers remains clinically relevant. Features of T-cell-mediated AR are tubulointerstitial and vascular inflammation associated with excessive extracellular matrix (ECM) remodeling, regulated by metzincins, including matrix metalloproteases (MMP). Our study focused on expression of metzincins (METS), and metzincins and related genes (MARGS) in renal allograft biopsies using four independent microarray data sets. Our own cases included normal histology (N, n = 20), borderline changes (BL, n = 4), AR (n = 10) and AR + IF/TA (n = 7). MARGS enriched in all data sets were further examined on mRNA and/or protein level in additional patients. METS and MARGS differentiated AR from BL, AR + IF/TA and N in a principal component analysis. Their expression changes correlated to Banff t- and i-scores. Two AR classifiers, based on METS (including MMP7, TIMP1), or on MARGS were established in our own and validated in the three additional data sets. Thirteen MARGS were significantly enriched in AR patients of all data sets comprising MMP7, -9, TIMP1, -2, thrombospondin2 (THBS2) and fibrillin1. RT-PCR using microdissected glomeruli/tubuli confirmed MMP7, -9 and THBS2 microarray results; immunohistochemistry showed augmentation of MMP2, -9 and TIMP1 in AR. TIMP1 and THBS2 were enriched in AR patient serum. Therefore, differentially expressed METS and MARGS especially TIMP1, MMP7/-9 represent potential molecular AR markers.
Collapse
Affiliation(s)
- S Rödder
- Department of Nephrology and Hypertension, Inselspital Bern, University Hospital, University of Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bellayr IH, Mu X, Li Y. Biochemical insights into the role of matrix metalloproteinases in regeneration: challenges and recent developments. Future Med Chem 2009; 1:1095-1111. [PMID: 20161478 PMCID: PMC2794138 DOI: 10.4155/fmc.09.83] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a group of proteases that belong to the metazincin family. These proteins consist of similar structures featuring a signaling peptide, a propeptide domain, a catalytic domain where the notable zinc ion binding site is found and a hinge region that binds to the C-terminal hemoplexin domain. MMPs can be produced by numerous cell types through secretion or localization to the cell membrane. While certain chemical compounds have been known to generally inhibit MMPs, naturally occurring proteins known as tissue inhibitors of metalloproteinases (TIMPs) effectively interact with MMPs to modify their biological roles. MMPs are very important enzymes that actively participate in remodeling the extracellular matrix by degrading certain constituents, along with promoting cell proliferation, migration, differentiation, apoptosis and angiogenesis. In normal adult tissue, they are almost undetectable; however, when perturbed through injury, disease or pregnancy, they have elevated expression. The goal of this review is to identify new experimental findings that have provided further insight into the role of MMPs in skeletal muscle, nerve and dermal tissue, as well as in the liver, heart and kidneys. Increased expression of MMPs can improve the regeneration potential of wounds; however, an imbalance between MMP and TIMP expression can prove to be destructive for afflicted tissues.
Collapse
Affiliation(s)
- IH Bellayr
- The Laboratory of Molecular Pathology, Stem Cell Research Center, Children’s Hospital of UPMC, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213-2582, USA
| | - X Mu
- The Laboratory of Molecular Pathology, Stem Cell Research Center, Children’s Hospital of UPMC, Pittsburgh, PA 15213, USA
- Department of Orthopedic Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213-2582, USA
| | - Y Li
- The Laboratory of Molecular Pathology, Stem Cell Research Center, Children’s Hospital of UPMC, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213-2582, USA
- Department of Orthopedic Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213-2582, USA
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213-2582, USA
| |
Collapse
|