1
|
Masset C, Drillaud N, Ternisien C, Degauque N, Gerard N, Bruneau S, Branchereau J, Blancho G, Mesnard B, Brouard S, Giral M, Cantarovich D, Dantal J. The concept of immunothrombosis in pancreas transplantation. Am J Transplant 2025; 25:650-668. [PMID: 39709128 DOI: 10.1016/j.ajt.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/06/2024] [Accepted: 11/23/2024] [Indexed: 12/23/2024]
Abstract
Early failure of a pancreatic allograft due to complete thrombosis has an incidence of approximately 10% and is the main cause of comorbidity in pancreas transplantation. Although several risk factors have been identified, the exact mechanisms leading to this serious complication are still unclear. In this review, we define the roles of the individual components involved during sterile immunothrombosis-namely endothelial cells, platelets, and innate immune cells. Further, we review the published evidence linking the main risk factors for pancreatic thrombosis to cellular activation and vascular modifications. We also explore the unique features of the pancreas itself: the vessel endothelium, specific vascularization, and relationship to other organs-notably the spleen and adipose tissue. Finally, we summarize the therapeutic possibilities for the prevention of pancreatic thrombosis depending on the different mechanisms such as anticoagulation, anti-inflammatory molecules, endothelium protectors, antagonism of damage-associated molecular patterns, and use of machine perfusion.
Collapse
Affiliation(s)
- Christophe Masset
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
| | - Nicolas Drillaud
- Laboratory of Hemostasis, Nantes University Hospital, Nantes, France
| | | | - Nicolas Degauque
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Nathalie Gerard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sarah Bruneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Julien Branchereau
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Gilles Blancho
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Benoit Mesnard
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Sophie Brouard
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Magali Giral
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Diego Cantarovich
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Jacques Dantal
- Institut de Transplantation-Urologie-Néphrologie (ITUN), Nantes University Hospital, Nantes, France; Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| |
Collapse
|
2
|
Saemann L, Naujoks P, Hartrumpf L, Pohl S, Simm A, Szabó G. Sex-Specific Protection of Endothelial Function after Vascular Ischemia/Reperfusion Injury by the Senomorphic Agent Ruxolitinib. Int J Mol Sci 2023; 24:11727. [PMID: 37511486 PMCID: PMC10381013 DOI: 10.3390/ijms241411727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemia/reperfusion (I/R)-induced endothelial dysfunction occurs in various cardiovascular disorders. I/R injury is partially driven by the release of cytokines. Known for its use in senotherapy, the JAK inhibitor ruxolitinib is able to block the release of cytokines. We investigated the effect of ruxolitinib on the cytokine release and endothelial-dependent vasorelaxation in an in vitro model of I/R. Aortic segments of C57BL/6J mice (N = 12/group) were divided into three groups: control, in vitro I/R (I/R group), and in vitro I/R with ruxolitinib during ischemic incubation (I/R+Ruxo group). We determined cytokine expression. In organ bath chambers, we investigated the maximal endothelial-dependent relaxation to acetylcholine (RmaxACh) and maximal endothelial-independent relaxation to sodium-nitroprusside (RmaxSNP). RmaxACh was decreased in I/R compared to the control (83.6 ± 2.4 vs. 48.6 ± 3.4%; p < 0.05) and I/R+Ruxo (74.4 ± 2.6 vs. 48.6 ± 3.4%; p < 0.05). RmaxSNP was comparable between all groups. IL-10 was detectable only in I/R+Ruxo. CXCL5, CCL2, CCL3, CCL8, CCL11, ICAM-1, IL-1α, IL-7, TNF-α, and G-CSF were decreased or not detectable in I/R+Ruxo. In I/R+Ruxo, ICAM-1 was reduced in rings only from male mice. Treatment of the aorta from mice during in vitro ischemia with the senomorphic agent ruxolitinib reduces cytokine release and protects the endothelium from I/R-mediated dysfunction.
Collapse
Affiliation(s)
- Lars Saemann
- Department of Cardiac Surgery, University Hospital Halle, 06120 Halle, Germany
| | - Paula Naujoks
- Department of Cardiac Surgery, University Hospital Halle, 06120 Halle, Germany
| | - Lotta Hartrumpf
- Department of Cardiac Surgery, University Hospital Halle, 06120 Halle, Germany
| | - Sabine Pohl
- Department of Cardiac Surgery, University Hospital Halle, 06120 Halle, Germany
| | - Andreas Simm
- Department of Cardiac Surgery, University Hospital Halle, 06120 Halle, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Halle, 06120 Halle, Germany
- Department of Cardiac Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Kervella D, Mesnard B, Prudhomme T, Bruneau S, Masset C, Cantarovich D, Blancho G, Branchereau J. Sterile Pancreas Inflammation during Preservation and after Transplantation. Int J Mol Sci 2023; 24:ijms24054636. [PMID: 36902067 PMCID: PMC10003374 DOI: 10.3390/ijms24054636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
The pancreas is very susceptible to ischemia-reperfusion injury. Early graft losses due to pancreatitis and thrombosis represent a major issue after pancreas transplantation. Sterile inflammation during organ procurement (during brain death and ischemia-reperfusion) and after transplantation affects organ outcomes. Sterile inflammation of the pancreas linked to ischemia-reperfusion injury involves the activation of innate immune cell subsets such as macrophages and neutrophils, following tissue damage and release of damage-associated molecular patterns and pro-inflammatory cytokines. Macrophages and neutrophils favor tissue invasion by other immune cells, have deleterious effects or functions, and promote tissue fibrosis. However, some innate cell subsets may promote tissue repair. This outburst of sterile inflammation promotes adaptive immunity activation via antigen exposure and activation of antigen-presenting cells. Better controlling sterile inflammation during pancreas preservation and after transplantation is of utmost interest in order to decrease early allograft loss (in particular thrombosis) and increase long-term allograft survival. In this regard, perfusion techniques that are currently being implemented represent a promising tool to decrease global inflammation and modulate the immune response.
Collapse
Affiliation(s)
- Delphine Kervella
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
- Correspondence:
| | - Benoît Mesnard
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Service d’Urologie, ITUN, F-44000 Nantes, France
| | - Thomas Prudhomme
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Sarah Bruneau
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Christophe Masset
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Diego Cantarovich
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Gilles Blancho
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Julien Branchereau
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Service d’Urologie, ITUN, F-44000 Nantes, France
| |
Collapse
|
4
|
Dong GH, Li XF, Li JZ, Zhang ZD, Hu WM, Luo YH, Li ZD, Tian BL, He MX, Zhu XW. Intercellular adhesion molecular-1, Fas, and Fas ligand as diagnostic biomarkers for acute allograft rejection of pancreaticoduodenal transplantation in pigs. Dig Dis Sci 2014; 59:778-86. [PMID: 24162270 DOI: 10.1007/s10620-013-2904-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 10/03/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND The early diagnosis of pancreas allograft dysfunction is crucial for the management and long-term survival of transplanted pancreases. We investigated whether intercellular adhesion molecular-1 (ICAM-1), Fas, and Fas ligand (FasL) can be used as novel biomarkers of acute pancreaticoduodenal allograft dysfunction in pigs. METHODS Forty outbred landraces were randomly divided into three groups. In the control group (8 pigs), a sham operation was performed but no drugs were administered. In groups 1 and 2 (8 pairs each), pancreaticoduodenal transplantation was performed, with the latter administered immunosuppressive drugs and the former not administered drugs. The expression of ICAM-1, Fas, and FasL mRNA in the peripheral vein blood was assessed by flow cytometry and RT-PCR, pre-transplant and on days 1, 3, 5, and 7 after transplantation. Simultaneously, the levels of glucose, insulin, and glucagon in the serum of the recipients were evaluated. The allograft pancreas tissue was obtained to assess the pathological damage and the expression of Fas and FasL by immunohistochemistry. RESULTS On the first 7 days after transplantation, ICAM-1, Fas, and FasL mRNA expression in the blood leukocytes of the recipient increased significantly in groups 1 and 2 compared with the control group (P < 0.01). However, the levels in group 2 were significantly lower than those in group 1 (P < 0.05). Interestingly, the FasL expression increased but the Fas expression decreased gradually in the graft pancreas tissue during the first week after transplantation in both groups 1 and 2 compared with the control group (P < 0.05). The levels of serous glucose, insulin, and glucagon in groups 1 and 2 obviously changed on day 1 after transplantation but returned to normal on day 2. The recipient's pancreas pathological sections did not exhibit any rejection changes on days 1 and 3 after transplantation but showed rejection damage on days 5 and 7. CONCLUSION ICAM-1, Fas, and FasL were found to be sensitive biomarkers of acute pancreas allograft dysfunction after pancreaticoduodenal transplantation in pigs, and their monitoring could be used to evaluate the effectiveness of the immunosuppression therapy.
Collapse
Affiliation(s)
- Gao-hong Dong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lawson C. Pancreatic allografts: identification of useful biomarkers of rejection and beyond. Dig Dis Sci 2014; 59:704-5. [PMID: 24399054 DOI: 10.1007/s10620-013-2986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Charlotte Lawson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK,
| |
Collapse
|
6
|
Current state of pancreas preservation and implications for DCD pancreas transplantation. Transplantation 2013; 95:1419-24. [PMID: 23579769 DOI: 10.1097/tp.0b013e318285558f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the main factors limiting potential uptake of pancreas transplantation, particularly in the United Kingdom, is the shortage of grafts. There has therefore been a recent expansion, particularly in the United Kingdom, in the utilization of grafts from donation after cardiac death (DCD) donors. These grafts are subjected to a greater ischemic insult and are arguably at higher risk of poor functional outcome. Although conventional preservation techniques may be adequate for donation after brain death (DBD) and low-risk DCD pancreases, as the number of DCD pancreas transplants increase and the threshold for rejecting organs decreases, the importance of optimal preservation techniques is going to increase. Over recent years, there have been significant advances in preservation techniques for DCD kidneys, improving the outcome of these marginal grafts. However, the use of such techniques for pancreas preservation is extremely limited and mainly historical. This overview describes the background and results of the established method of pancreas preservation for DBD, namely, cold static storage, and describes the use of the two-layer method. It also reviews pulsatile machine perfusion and normothermic perfusion for pancreas preservation techniques, which have shown promise in the preservation of DCD kidney grafts. The use of these techniques in pancreas preservation is predominantly historical but warrants reevaluation as to the feasibility of applying these techniques to DCD pancreas grafts not only for preservation but also for viability assessment. Further areas for development of pancreas preservation are discussed.
Collapse
|
7
|
Intercellular adhesion molecule-1 blockade attenuates inflammatory response and improves microvascular perfusion in rat pancreas grafts. Pancreas 2012; 41:1112-8. [PMID: 22617707 DOI: 10.1097/mpa.0b013e31824abb2c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES After pancreas transplantation (PTx), early capillary malperfusion and leukocyte recruitment indicate the manifestation of severe ischemia/reperfusion injury (IRI). Oscillatory blood-flow redistribution (intermittent capillary perfusion, IP), leading to an overall decrease in erythrocyte flux, precedes complete microvascular perfusion failure with persistent blood flow cessation. We addressed the role of intercellular adhesion molecule-1 (ICAM-1) for leukocyte-endothelial interactions (LEIs) after PTx and evaluated the contribution of IP and malperfusion. METHODS Pancreas transplantation was performed in rats after 18-hour preservation, receiving either isotype-matched IgG or monoclonal anti-ICAM-1 antibodies (10 mg/kg intravenously) once before reperfusion. Leukocyte-endothelial interaction, IP, erythrocyte flux, and functional capillary density, respectively, were examined in vivo during 2-hour reperfusion. Nontransplanted animals served as controls. Tissue samples were analyzed by histomorphometry. RESULTS In grafts of IgG-treated animals, IP was encountered already at an early stage after reperfusion and steadily increased over 2 hours, whereas erythrocyte flux declined continuously. In contrast, inhibition of ICAM-1 significantly improved erythrocyte flux and delayed IP appearance by 2 hours. Further, anti-ICAM-1 significantly reduced LEI and leukocyte tissue infiltration when compared to IgG; edema development was less pronounced in response to anti-ICAM-1 monoclonal antibody. CONCLUSION Intercellular adhesion molecule-1 blockade significantly attenuates IRI via immediate reduction of LEI and concomitant improvement of capillary perfusion patterns, emphasizing its central role during IRI in PTx.
Collapse
|
8
|
Zhu HH, Jiang LL. Serum inter-cellular adhesion molecule 1 is an early marker of diagnosis and prediction of severe acute pancreatitis. World J Gastroenterol 2012; 18:2554-60. [PMID: 22654454 PMCID: PMC3360455 DOI: 10.3748/wjg.v18.i20.2554] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/28/2011] [Accepted: 02/16/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine if serum inter-cellular adhesion molecule 1 (ICAM-1) is an early marker of the diagnosis and prediction of severe acute pancreatitis (SAP) within 24 h of onset of pain, and to compare the sensitivity, specificity and prognostic value of this test with those of acute physiology and chronic health evaluation (APACHE) II score and interleukin-6 (IL-6).
METHODS: Patients with acute pancreatitis (AP) were divided into two groups according to the Ranson’s criteria: mild acute pancreatitis (MAP) group and SAP group. Serum ICAM-1, APACHE IIand IL-6 levels were detected in all the patients. The sensitivity, specificity and prognostic value of the ICAM-1, APACHE IIscore and IL-6 were evaluated.
RESULTS: The ICAM-1 level in 36 patients with SAP within 24 h of onset of pain was increased and was significantly higher than that in the 50 patients with MAP and the 15 healthy volunteers (P < 0.01). The ICAM-1 level (25 ng/mL) was chosen as the optimum cutoff to distinguish SAP from MAP, and the sensitivity, specificity, positive predictive value, negative predictive value (NPV), positive likelihood ratio and negative likelihood ratio were 61.11%, 71.42%, 0.6111, 0.7142, 2.1382 and 0.5445, respectively. The area under the curve demonstrated that the prognostic accuracy of ICAM-1 (0.712) was similar to the APACHE-IIscoring system (0.770) and superior to IL-6 (0.508) in distinguishing SAP from MAP.
CONCLUSION: ICAM-1 test is a simple, rapid and reliable method in clinical practice. It is an early marker of diagnosis and prediction of SAP within the first 24 h after onset of pain or on admission. As it has a relatively low NPV and does not allow it to be a stand-alone test for the diagnosis of AP, other conventional diagnostic tests are required.
Collapse
|
9
|
Recombinant human MFG-E8 attenuates cerebral ischemic injury: its role in anti-inflammation and anti-apoptosis. Neuropharmacology 2011; 62:890-900. [PMID: 21964436 DOI: 10.1016/j.neuropharm.2011.09.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/23/2011] [Accepted: 09/14/2011] [Indexed: 12/25/2022]
Abstract
Excessive inflammation and apoptosis contribute to the pathogenesis of ischemic stroke. MFG-E8 is a 66-kDa glycoprotein that has shown tissue protection in various models of organ injury. However, the potential role of MFG-E8 in cerebral ischemia has not been investigated. We found that levels of MFG-E8 protein in the brain were reduced at 24 h after cerebral ischemia. To assess the potential role of MFG-E8 in cerebral ischemia, adult male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAO). At 1 h post-stroke onset, an intravenous administration of 1 ml saline as vehicle or 160 μg/kg BW recombinant human MFG-E8 (rhMFG-E8) as treatment was given. The optimal dose of rhMFG-E8 was obtained from previous dose-response organ protection in rat sepsis studies. Neurological scores were determined at 24 h and 48 h post-MCAO. Rats were sacrificed thereafter and brains rapidly removed and analyzed for infarct size, histopathology, and markers of inflammation and apoptosis. Compared with saline vehicle, rhMFG-E8 treatment led to significant decreases in sensorimotor and vestibulomotor deficits, and infarct size at 24 h and 48 h post-MCAO. Measures associated with improved outcome included reduced microglial inflammatory cytokine secretion, adhesion molecules and neutrophil influx, cleaved caspase-3, and upregulation of peroxisome proliferator activated receptor-γ (PPAR-γ), and Bcl-2/Bax ratio leading to decreased apoptosis. Thus, rhMFG-E8 treatment is neuroprotective against cerebral ischemia through suppression of inflammation and apoptosis. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
|