1
|
Berretta M, Quagliariello V, Maurea N, Di Francia R, Sharifi S, Facchini G, Rinaldi L, Piezzo M, Manuela C, Nunnari G, Montopoli M. Multiple Effects of Ascorbic Acid against Chronic Diseases: Updated Evidence from Preclinical and Clinical Studies. Antioxidants (Basel) 2020; 9:antiox9121182. [PMID: 33256059 PMCID: PMC7761324 DOI: 10.3390/antiox9121182] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Severe disease commonly manifests as a systemic inflammatory process. Inflammation is associated withthe enhanced production of reactive oxygen and nitrogen species and with a marked reduction in the plasma concentrations of protective antioxidant molecules. This imbalance gives rise to oxidative stress, which is greater in patients with more severe conditions such as sepsis, cancer, cardiovascular disease, acute respiratory distress syndrome, and burns. In these patients, oxidative stress can trigger cell, tissue, and organ damage, thus increasing morbidity and mortality. Ascorbic acid (ASC) is a key nutrient thatserves as an antioxidant and a cofactor for numerous enzymatic reactions. However, humans, unlike most mammals, are unable to synthesize it. Consequently, ASC must be obtained through dietary sources, especially fresh fruit and vegetables. The value of administering exogenous micronutrients, to reestablish antioxidant concentrations in patients with severe disease, has been recognized for decades. Despite the suggestion that ASC supplementation may reduce oxidative stress and prevent several chronic conditions, few large, randomized clinical trials have tested it in patients with severe illness. This article reviews the recent literature on the pharmacological profile of ASC and the role of its supplementation in critically ill patients.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
- Correspondence:
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), 60126 Ancona, Italy;
| | - Saman Sharifi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| | - Gaetano Facchini
- Division of Medical Oncology, “S. Maria delle Grazie” Hospital—ASL Napoli 2 Nord, 80126 Pozzuoli, Italy;
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 80121 Napoli, Italy;
| | - Michela Piezzo
- Division of Breast Medical Oncology, Istituto Nazionale Tumori—IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy;
| | - Ceccarelli Manuela
- Division of Infectious Disease, University of Catania, 95122 Catania, Italy;
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy; (S.S.); (M.M.)
| |
Collapse
|
2
|
Associations of Oxidative Stress and Postoperative Outcome in Liver Surgery with an Outlook to Future Potential Therapeutic Options. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3950818. [PMID: 30906502 PMCID: PMC6393879 DOI: 10.1155/2019/3950818] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022]
Abstract
Several types of surgical procedures have shown to elicit an inflammatory stress response, leading to substantial cytokine production and formation of oxygen-based or nitrogen-based free radicals. Chronic liver diseases including cancers are almost always characterized by increased oxidative stress, in which hepatic surgery is likely to potentiate at least in the short term and hereby furthermore impair the hepatic redox state. During liver resection, intermittent inflow occlusion is commonly applied to prevent excessive blood loss but resulting ischemia and reperfusion of the liver have been linked to increased oxidative stress, leading to impairment of cell functions and subsequent cell death. In the field of liver transplantation, ischemia/reperfusion injury has extensively been investigated in the last decades and has recently been in the scientific focus again due to increased use of marginal donor organs and new machine perfusion concepts. Therefore, given the intriguing role of oxidative stress in the pathogenesis of numerous diseases and in the perioperative setting, the interest for a therapeutic antioxidative agent has been present for several years. This review is aimed at giving an introduction to oxidative stress in surgical procedures in general and then examines the role of oxidative stress in liver surgery in particular, discussing both transplantation and resection. Results from studies in the animal and human settings are included. Finally, potential therapeutic agents that might be beneficial in reducing the burden of oxidative stress in hepatic diseases and during surgery are presented. While there is compelling evidence from animal models and a limited number of clinical studies showing that oxidative stress plays a major role in both liver resection and transplantation and several recent studies have suggested a potential for antioxidative treatment in chronic liver disease (e.g., steatosis), the search for effective antioxidants in the field of liver surgery is still ongoing.
Collapse
|
3
|
Xiao M, Zhong H, Xia L, Tao Y, Yin H. Pathophysiology of mitochondrial lipid oxidation: Role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radic Biol Med 2017; 111:316-327. [PMID: 28456642 DOI: 10.1016/j.freeradbiomed.2017.04.363] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023]
Abstract
Mitochondrial lipids are essential for maintaining the integrity of mitochondrial membranes and the proper functions of mitochondria. As the "powerhouse" of a cell, mitochondria are also the major cellular source of reactive oxygen species (ROS). Oxidative stress occurs when the antioxidant system is overwhelmed by overproduction of ROS. Polyunsaturated fatty acids in mitochondrial membranes are primary targets for ROS attack, which may lead to lipid peroxidation (LPO) and generation of reactive lipids, such as 4-hydroxynonenal. When mitochondrial lipids are oxidized, the integrity and function of mitochondria may be compromised and this may eventually lead to mitochondrial dysfunction, which has been associated with many human diseases including cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases. How mitochondrial lipids are oxidized and the underlying molecular mechanisms and pathophysiological consequences associated with mitochondrial LPO remain poorly defined. Oxidation of the mitochondria-specific phospholipid cardiolipin and generation of bioactive lipids through mitochondrial LPO has been increasingly recognized as an important event orchestrating apoptosis, metabolic reprogramming of energy production, mitophagy, and immune responses. In this review, we focus on the current understanding of how mitochondrial LPO and generation of bioactive lipid mediators in mitochondria are involved in the modulation of mitochondrial functions in the context of relevant human diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Mengqing Xiao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huiqin Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China
| | - Lin Xia
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Yongzhen Tao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; University of the Chinese Academy of Sciences, CAS, Beijing, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China.
| |
Collapse
|
4
|
Augusto VS, Rodrigues AJ, Reis GS, Silveira APC, de Castro e Silva O, Mente ED, Jordão AA, Evora PRB. Evaluation of oxidative stress in the late postoperative stage of liver transplantation. Transplant Proc 2014; 46:1453-7. [PMID: 24836832 DOI: 10.1016/j.transproceed.2013.12.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/08/2013] [Accepted: 12/16/2013] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Liver transplant recipients are at an increased oxidative stress risk due to pre-existing hepatic impairment, ischemia-reperfusion injury, immunosuppression, and functional graft rejection. This study compared the oxidative status of healthy control subjects, patients with liver cirrhosis on the list for transplantation, and subjects already transplanted for at least 12 months. PATIENTS AND METHODS Sixty adult male patients, aged between 27 and 67 years, were subdivided into 3 groups: a control group (15 healthy volunteers), a cirrhosis group (15 volunteers), and a transplant group (30 volunteers). Oxidative stress was evaluated by activity of reduced glutathione, malondialdehyde, and vitamin E. RESULTS There was a significant difference (P < .01) in the plasma concentration of reduced glutathione in the 3 groups, with the lowest values observed in the transplanted group. The malondialdehyde values differed significantly (P < .01) among the 3 groups, with the transplanted group again having the lowest concentrations. The lowest concentrations of vitamin E were observed in patients with cirrhosis compared with control subjects, and there was a significant correlation (P < .05) among the 3 groups. No correlations were found between reduced glutathione and vitamin E or between vitamin E and malondialdehyde. However, there were strong correlations between plasma malondialdehyde and reduced glutathione in the 3 groups: control group, r = 0.9972 and P < .0001; cirrhotic group, r = 0.9765 and P < .0001; and transplanted group, r = 0.8981 and P < .0001. CONCLUSIONS In the late postoperative stage of liver transplantation, oxidative stress persists but in attenuated form.
Collapse
Affiliation(s)
- V S Augusto
- Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, SP, Brazil
| | - A J Rodrigues
- Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, SP, Brazil
| | - G S Reis
- Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, SP, Brazil
| | - A P C Silveira
- Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, SP, Brazil
| | - O de Castro e Silva
- Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, SP, Brazil
| | - E D Mente
- Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, SP, Brazil
| | - A A Jordão
- Department of Internal Medicine, Ribeirão Preto Faculty of Medicine, University of São Paulo, SP, Brazil
| | - P R B Evora
- Department of Surgery and Anatomy, Ribeirão Preto School of Medicine, University of São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Perioperative Values of Glutathione Peroxidase Activity and Malondialdehyde Levels in Enolic Cirrhotic Recipients of a Liver Transplant. Transplant Proc 2012; 44:2071-3. [PMID: 22974913 DOI: 10.1016/j.transproceed.2012.07.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Abd Ellah MR. The role of liver biopsy in detection of hepatic oxidative stress. Vet Med Int 2011; 2011:613602. [PMID: 21403828 PMCID: PMC3042635 DOI: 10.4061/2011/613602] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 12/30/2010] [Accepted: 01/07/2011] [Indexed: 12/16/2022] Open
Abstract
The goal of the current paper is to explore the role of liver biopsy as a tool in detection of hepatic oxidative stress, with brief notes on different types of free radicals, antioxidants, hepatic and blood oxidative stress, and lipid peroxidation. Hepatic oxidative stress was investigated for many years in human and animals, but most of the studies performed in animals were concerned with studying oxidative status in the liver tissues after slaughtering or euthanasia. However, in human medicine, a large number of studies were implemented to investigate the status of antioxidants in liver biopsy specimens. Similar studies are required in animals, as the changes in hepatic antioxidants and formation of lipid peroxide give a good idea about the condition of the liver. On the other hand, hepatic disease may present without significant effect on blood oxidative status, and, consequently, the best way to detect the status of hepatic oxidants and antioxidants is through measuring in liver biopsy. Measuring antioxidants status directly in the liver tissues gives an accurate estimation about the condition of the liver, permits the diagnosis of hepatic dysfunction, and helps to determine the degree of deterioration in the hepatic cells.
Collapse
Affiliation(s)
- Mahmoud Rushdi Abd Ellah
- Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
7
|
Sugawara Y, Tamura S, Kokudo N. Antiviral treatment for hepatitis C virus infection after liver transplantation. HEPATITIS RESEARCH AND TREATMENT 2010; 2010:475746. [PMID: 21151523 PMCID: PMC2989693 DOI: 10.1155/2010/475746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/13/2010] [Accepted: 10/06/2010] [Indexed: 12/16/2022]
Abstract
A significant proportion of patients with chronic hepatitis C virus (HCV) infection develop liver cirrhosis and complications of end-stage liver disease over two to three decades and require liver transplantation, however, reinfection is common and leads to further adverse events under immunosuppression. Pretransplant antiviral or preemptive therapy is limited to mildly decompensated patients due to poor tolerance. The mainstay of management represents directed antiviral therapy after evidence of recurrence of chronic hepatitis C. Combined pegylated interferon and ribavirin therapy is the current standard treatment with sustained viral response rates of 25% to 45%. The rate is lower than that in the immunocompetent population, partly due to the high prevalence of intolerability. To date, there is no general consensus regarding the antiviral treatment modality, timing, or dosing for HCV in patients with advanced liver disease and after liver transplantation. New anti-HCV drugs to delay disease progression or to enhance viral clearance are necessary.
Collapse
Affiliation(s)
- Yasuhiko Sugawara
- Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Sumihito Tamura
- Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Norihiro Kokudo
- Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|