Myocardial Vascular Function Assessed by Dynamic Oxygenation-sensitive Cardiac Magnetic Resonance Imaging Long-term Following Cardiac Transplantation.
Transplantation 2021;
105:1347-1355. [PMID:
32804801 DOI:
10.1097/tp.0000000000003419]
[Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND
Coronary vascular function is related to adverse outcomes following cardiac transplantation (CTx) in patients with or without cardiac allograft vasculopathy (CAV). The noninvasive assessment of the myocardial vascular response using oxygenation-sensitive cardiac magnetic resonance (OS-CMR has not been investigated in stable long-term CTx recipients).
METHODS
CTx patients were prospectively recruited to complete a CMR study with a breathing maneuver of hyperventilation followed by a voluntary apnea. Changes in OS-sensitive signal intensity reflecting the myocardial oxygenation response were monitored and expressed as % change in response to these breathing maneuvers. Myocardial injury was further investigated with T2-weighted imaging, native and postcontrast T1 measurements, extracellular volume measurements, and late gadolinium enhancement.
RESULTS
Forty-six CTx patients with (n = 23) and without (n = 23) CAV, along with 25 healthy controls (HC), were enrolled. The OS response was significantly attenuated in CTx compared with HC at the 30-second time-point into the breath-hold (2.63% ± 4.16% versus 6.40% ± 5.96%; P = 0.010). Compared with HC, OS response was lower in CTx without CAV (2.62% ± 4.60%; P < 0.05), while this response was further attenuated in patients with severe CAV (grades 2-3, -2.24% ± 3.65%). An inverse correlation was observed between OS-CMR, ventricular volumes, and diffuse fibrosis measured by extracellular volume mapping.
CONCLUSIONS
In heart transplant patients, myocardial oxygenation is impaired even in the absence of CAV suggesting microvascular dysfunction. These abnormalities can be identified by oxygenation-sensitive CMR using simple breathing maneuvers.
Collapse