1
|
Bellanti F, Mangieri D, di Bello G, Lo Buglio A, Pannone G, Pedicillo MC, Fersini A, Dobrakowski M, Kasperczyk A, Kasperczyk S, Vendemiale G. Redox-Dependent Modulation of Human Liver Progenitor Cell Line Fate. Int J Mol Sci 2023; 24:1934. [PMID: 36768260 PMCID: PMC9916526 DOI: 10.3390/ijms24031934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Redox homeostasis is determinant in the modulation of quiescence/self-renewal/differentiation of stem cell lines. The aim of this study consisted of defining the impact of redox modifications on cell fate in a human hepatic progenitor line. To achieve this, the HepaRG cell line, which shows oval ductular bipotent characteristics, was used. The impact of redox status on the balance between self-renewal and differentiation of HepaRG cells was investigated using different methodological approaches. A bioinformatic analysis initially proved that the trans-differentiation of HepaRG toward bipotent progenitors is associated with changes in redox metabolism. We then exposed confluent HepaRG (intermediate differentiation phase) to oxidized (H2O2) or reduced (N-acetylcysteine) extracellular environments, observing that oxidation promotes the acquisition of a mature HepaRG phenotype, while a reduced culture medium stimulates de-differentiation. These results were finally confirmed through pharmacological modulation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2), a principal modulator of the antioxidant response, in confluent HepaRG. NRF2 inhibition led to intracellular pro-oxidative status and HepaRG differentiation, while its activation was associated with low levels of reactive species and de-differentiation. In conclusion, this study shows that both intra- and extracellular redox balance are crucial in the determination of HepaRG fate. The impact of redox status in the differentiation potential of HepaRG cells is significant on the utilization of this cell line in pre-clinical studies.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giorgia di Bello
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Aurelio Lo Buglio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Pannone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | | | - Alberto Fersini
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Michał Dobrakowski
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Aleksandra Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
2
|
Bellanti F, di Bello G, Tamborra R, Amatruda M, Lo Buglio A, Dobrakowski M, Kasperczyk A, Kasperczyk S, Serviddio G, Vendemiale G. Impact of senescence on the transdifferentiation process of human hepatic progenitor-like cells. World J Stem Cells 2021; 13:1595-1609. [PMID: 34786160 PMCID: PMC8567448 DOI: 10.4252/wjsc.v13.i10.1595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Senescence is characterized by a decline in hepatocyte function, with impairment of metabolism and regenerative capacity. Several models that duplicate liver functions in vitro are essential tools for studying drug metabolism, liver diseases, and organ regeneration. The human HepaRG cell line represents an effective model for the study of liver metabolism and hepatic progenitors. However, the impact of senescence on HepaRG cells is not yet known. AIM To characterize the effects of senescence on the transdifferentiation capacity and mitochondrial metabolism of human HepaRG cells. METHODS We compared the transdifferentiation capacity of cells over 10 (passage 10 [P10]) vs P20. Aging was evaluated by senescence-associated (SA) beta-galactosidase activity and the comet assay. HepaRG transdifferentiation was analyzed by confocal microscopy and flow cytometry (expression of cluster of differentiation 49a [CD49a], CD49f, CD184, epithelial cell adhesion molecule [EpCAM], and cytokeratin 19 [CK19]), quantitative PCR analysis (expression of albumin, cytochrome P450 3A4 [CYP3A4], γ-glutamyl transpeptidase [γ-GT], and carcinoembryonic antigen [CEA]), and functional analyses (albumin secretion, CYP3A4, and γ-GT). Mitochondrial respiration and the ATP and nicotinamide adenine dinucleotide (NAD+)/NAD with hydrogen (NADH) content were also measured. RESULTS SA β-galactosidase staining was higher in P20 than P10 HepaRG cells; in parallel, the comet assay showed consistent DNA damage in P20 HepaRG cells. With respect to P10, P20 HepaRG cells exhibited a reduction of CD49a, CD49f, CD184, EpCAM, and CK19 after the induction of transdifferentiation. Furthermore, lower gene expression of albumin, CYP3A4, and γ-GT, as well as reduced albumin secretion capacity, CYP3A4, and γ-GT activity were reported in transdifferentiated P20 compared to P10 cells. By contrast, the gene expression level of CEA was not reduced by transdifferentiation in P20 cells. Of note, both cellular and mitochondrial oxygen consumption was lower in P20 than in P10 transdifferentiated cells. Finally, both ATP and NAD+/NADH were depleted in P20 cells with respect to P10 cells. CONCLUSION SA mitochondrial dysfunction may limit the transdifferentiation potential of HepaRG cells, with consequent impairment of metabolic and regenerative properties, which may alter applications in basic studies.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy.
| | - Giorgia di Bello
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Rosanna Tamborra
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Marco Amatruda
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Aurelio Lo Buglio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Michał Dobrakowski
- Department of Biochemistry, Medical University of Silesia, Zabrze 41-808, Poland
| | | | - Sławomir Kasperczyk
- Department of Biochemistry, Medical University of Silesia, Zabrze 41-808, Poland
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| |
Collapse
|
3
|
Bellanti F, di Bello G, Iannelli G, Pannone G, Pedicillo MC, Boulter L, Lu WY, Tamborra R, Villani R, Vendemiale G, Forbes SJ, Serviddio G. Inhibition of nuclear factor (erythroid-derived 2)-like 2 promotes hepatic progenitor cell activation and differentiation. NPJ Regen Med 2021; 6:28. [PMID: 34039998 PMCID: PMC8155039 DOI: 10.1038/s41536-021-00137-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 04/28/2021] [Indexed: 02/08/2023] Open
Abstract
The stem cell ability to self-renew and lead regeneration relies on the balance of complex signals in their microenvironment. The identification of modulators of hepatic progenitor cell (HPC) activation is determinant for liver regeneration and may improve cell transplantation for end-stage liver disease. This investigation used different models to point out the Nuclear factor (erythroid-derived 2)-like 2 (NRF2) as a key regulator of the HPC fate. We initially proved that in vivo models of biliary epithelial cells (BECs)/HPC activation show hepatic oxidative stress, which activates primary BECs/HPCs in vitro. NRF2 downregulation and silencing were associated with morphological, phenotypic, and functional modifications distinctive of differentiated cells. Furthermore, NRF2 activation in the biliary tract repressed the ductular reaction in injured liver. To definitely assess the importance of NRF2 in HPC biology, we applied a xenograft model by inhibiting NRF2 in the human derived HepaRG cell line and transplanting into SCID/beige mice administered with anti-Fas antibody to induce hepatocellular apoptosis; this resulted in effective human hepatocyte repopulation with reduced liver injury. To conclude, NRF2 inhibition leads to the activation and differentiation of liver progenitors. This redox-dependent transcription factor represents a potential target to regulate the commitment of undifferentiated hepatic progenitors into specific lineages.
Collapse
Affiliation(s)
- Francesco Bellanti
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Giorgia di Bello
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppina Iannelli
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Pannone
- Anatomical Pathology Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Carmela Pedicillo
- Anatomical Pathology Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Wei-Yu Lu
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston Birmingham, UK
| | - Rosanna Tamborra
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosanna Villani
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Vendemiale
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Gaetano Serviddio
- Centre for Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
4
|
Kamimura H, Ito S. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound. Xenobiotica 2015; 46:557-69. [DOI: 10.3109/00498254.2015.1091113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Foster JR, Lund G, Sapelnikova S, Tyrrell DL, Kneteman NM. Chimeric rodents with humanized liver: bridging the preclinical/clinical trial gap in ADME/toxicity studies. Xenobiotica 2013; 44:109-22. [DOI: 10.3109/00498254.2013.867553] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Higuchi Y, Kawai K, Yamazaki H, Nakamura M, Bree F, Guguen-Guillouzo C, Suemizu H. The human hepatic cell line HepaRG as a possible cell source for the generation of humanized liver TK-NOG mice. Xenobiotica 2013; 44:146-53. [PMID: 24066694 PMCID: PMC3906414 DOI: 10.3109/00498254.2013.836257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Humanized-liver mice, in which the liver has been repopulated with human hepatocytes, have been used to study aspects of human liver physiology such as drug metabolism, toxicology and hepatitis infection. However, the procurement of human hepatocytes is a major problem in producing humanized-liver mice because of the finite nature of the patient-derived resource. In order to overcome this limitation, the human hepatic cell line HepaRG® were evaluated as promising donor cells for liver reconstitution in the TK-NOG mouse model. We demonstrate that, in vivo, transplanted confluent culture or differentiated HepaRG® cells proliferated and differentiated toward both hepatocyte-like and biliary-like cells within the recipient liver. In contrast, proliferative HepaRG® cells could engraft TK-NOG mouse liver but could differentiate only toward biliary-like cells. The differentiation to hepatocyte-like cells was characterized by the detection of human albumin in the recipient mouse serum and was confirmed by immunohistochemical staining for human leukocyte antigen, human albumin, cytochrome P450 3A4, and multidrug resistance-associated protein 2. Biliary-like cells were characterized by positive staining for cytokeratin-19. These results indicated that the differentiated HepaRG® cells are a possible cell source for generating humanized-liver mice, which are a useful model for in vivo studies of liver physiology.
Collapse
Affiliation(s)
- Yuichiro Higuchi
- Central Institute for Experimental Animals , Kawasaki, Kanagawa , Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Vidal I, Blanchard N, Chenard-Neu MP, Bachellier P, Heyd B, Staedtler F, Schumacher M, Alexandre E, Richert L. Increased survival despite failure of transplanted human hepatocyte implantation into liver parenchyma of nude mice with repeated lethal Jo2-induced liver deficiency. Cell Transplant 2013; 23:1557-72. [PMID: 23636101 DOI: 10.3727/096368913x667501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We recently found that rat hepatocyte transplantation was efficient (liver repopulation: 2.4%) in a sublethal nude mouse model (less than 33% mortality) of repeated liver injury generated using Jo2, a mouse-specific anti-Fas antibody, at sublethal dose of 250 µg/kg for 3 weeks. Genomic analysis of the livers revealed cell cycle blockade and an antiproliferative status of circadian genes, suggesting a selective advantage. By contrast, in the present study, freshly isolated human hepatocyte transplantation performed in the same mouse model resulted in implantation of less than 6,000 cells per liver (about 0.006% repopulation) in all animals. Genomic analysis of nude mouse livers revealed a lack of P21 upregulation, while a signature of stimulation of liver regeneration was observed, including upregulation of early response genes and upregulation of circadian genes. When we translated this sublethal model to a lethal model (65% mortality) by increasing the Jo2 repeated doses to 375 µg/kg, human hepatocyte engraftment was still very low; however, animal mortality was corrected by transplantation (only 20% mortality). Genomic findings in livers from the mice of the lethal Jo2 transplanted group were similar to those of the sublethal Jo2 transplanted group, that is, no selective advantage genomic signature and signature of mouse liver regeneration. In conclusion, transplanted human hepatocytes acted as if they modified nude mouse liver responses to Jo2 by stimulating liver regeneration, leading to an increased survival rate.
Collapse
Affiliation(s)
- Isabelle Vidal
- EA 3921, IFR 133, Faculté de Médecine et de Pharmacie, Besançon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Andersson TB, Kanebratt KP, Kenna JG. The HepaRG cell line: a unique in vitro tool for understanding drug metabolism and toxicology in human. Expert Opin Drug Metab Toxicol 2012; 8:909-20. [PMID: 22568886 DOI: 10.1517/17425255.2012.685159] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION HepaRG is a unique cell line showing a great plasticity, which differentiates to both canaliculae-like and hepatocyte-like cells. The long-term stability of key cell functions, for example, the drug-metabolizing cytochrome P450 (CYP) enzyme activities, in culture is especially useful in drug metabolism, disposition and toxicity studies. AREAS COVERED This review describes features of the HepaRG cells focusing on drug-metabolizing enzymes and drug transporters, their functionality and regulation. Several applications in drug discovery studies are discussed and the use of HepaRG, as a human relevant predictive in vitro CYP induction model, is described. In addition, promising studies using HepaRG cells for understanding liver toxicity mechanisms by drug compounds are also discussed. EXPERT OPINION HepaRG cells exhibit features which make them useful as an in vitro model for drug metabolism, disposition and toxicity studies, and could, for many studies, replace the requirement for primary human hepatocytes. Care should be taken since HepaRG cells are of a specific genotype which is reflected in the expression of drug processing proteins. The finding that HepaRG cells form tight junctions provides the basis for formation of functional canalicular structures and this should be investigated further to aid development of human relevant hepatic in vitro 2D and 3D models.
Collapse
Affiliation(s)
- Tommy B Andersson
- DMPK Innovative Medicines, AstraZeneca R&D, Mölndal S-431 83 Mölndal, Sweden.
| | | | | |
Collapse
|
9
|
The nude mouse as model for liver deficiency study and treatment and xenotransplantation. Int J Hepatol 2012; 2012:140147. [PMID: 23193481 PMCID: PMC3502033 DOI: 10.1155/2012/140147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/13/2012] [Accepted: 09/07/2012] [Indexed: 02/06/2023] Open
Abstract
We aimed at reviewing the various uses of Nude mouse for the development of liver deficiency models and evaluation of efficacy of hepatic cell xenotransplantation. The first part records the large range of liver deficiency models that can be developed in Nude mice: surgical partial hepatectomy, acute toxic liver deficiency, chronic cirrhosis, and transgenic liver injury. The second part tackles the outcome of rat hepatocyte as well as human cell transplantation, both mature hepatocyte and hepatic progenitor, into Nude mouse submitted to liver injury. Results are discussed and compared to other available immunodeficient mouse models. The issue of humanized liver creation is also addressed. Altogether, these results show that Nude mouse appears to be a suitable small animal model to expand our insight into liver cell engraftment and regeneration.
Collapse
|