1
|
Gao Y, Ji Z, Zhao J, Gu J. Therapeutic potential of mesenchymal stem cells for fungal infections: mechanisms, applications, and challenges. Front Microbiol 2025; 16:1554917. [PMID: 39949625 PMCID: PMC11821621 DOI: 10.3389/fmicb.2025.1554917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
As a particularly serious condition in immunocompromised patients, fungal infections (FIs) have increasingly become a public health problem worldwide. Mesenchymal stem cells (MSCs), characterized by multilineage differentiation potential and immunomodulatory properties, are considered an emerging strategy for the treatment of FIs. In this study, the therapeutic potential of MSCs for FIs was reviewed, including their roles played by secreting antimicrobial peptides, regulating immune responses, and promoting tissue repair. Meanwhile, the status of research on MSCs in FIs and the controversies were also discussed. However, the application of MSCs still faces numerous challenges, such as the heterogeneity of cell sources, long-term safety, and feasibility of large-scale production. By analyzing the latest study results, this review intends to offer theoretical support for the application of MSCs in FI treatment and further research.
Collapse
Affiliation(s)
- Yangjie Gao
- Department of Dermatology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhe Ji
- Department of Pharmacology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyu Zhao
- Department of Dermatology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Julin Gu
- Department of Dermatology, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Kresse JC, Gregersen E, Atay JCL, Eijken M, Nørregaard R. Does the route matter? A preclinical review of mesenchymal stromal cell delivery to the kidney. APMIS 2023; 131:687-697. [PMID: 37750005 DOI: 10.1111/apm.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
Mesenchymal stromal/stem cell (MSC) therapy has been thoroughly tested in preclinical animal models and holds great promise for the treatment of kidney diseases. It is becoming increasingly evident that the efficacy of MSC therapy is dependent on several factors including dosage, the tissue source of MSCs, the route of delivery and timing of administration. In a time where MSC therapy is moving from preclinical research to clinically therapeutic use, the importance of choice of delivery method, modality, and administration route increases. In this review, we provide an overview of the different MSC delivery routes used in preclinical kidney disease models, highlight the recent advances in the field, and summarize studies comparing delivery routes of MSCs to the kidney.
Collapse
Affiliation(s)
| | - Emil Gregersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Marco Eijken
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Wanyan P, Wang X, Li N, Huang Y, She Y, Zhang L. Mesenchymal stem cells therapy for acute kidney injury: A systematic review with meta-analysis based on rat model. Front Pharmacol 2023; 14:1099056. [PMID: 37124211 PMCID: PMC10133560 DOI: 10.3389/fphar.2023.1099056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Objective: To systematically evaluate the efficacy of mesenchymal stem cells (MSCs) for acute kidney injury (AKI) in preclinical studies and to explore the optimal transplantation strategy of MSCs by network meta-analysis with the aim of improving the efficacy of stem cell therapy. Methods: Computer searches of PubMed, Web of Science, Cochrane, Embase, CNKI, Wanfang, VIP, and CBM databases were conducted until 17 August 2022. Literature screening, data extraction and quality evaluation were performed independently by two researchers. Results and Discussion: A total of 50 randomized controlled animal studies were included. The results of traditional meta-analysis showed that MSCs could significantly improve the renal function and injured renal tissue of AKI rats in different subgroups. The results of network meta-analysis showed that although there was no significant difference in the therapeutic effect between different transplant routes and doses of MSCs, the results of surface under the cumulative ranking probability curve (SUCRA) showed that the therapeutic effect of intravenous transplantation of MSCs was better than that of arterial and intrarenal transplantation, and the therapeutic effect of high dose (>1×106) was better than that of low dose (≤1×106). However, the current preclinical studies have limitations in experimental design, measurement and reporting of results, and more high-quality studies, especially direct comparative evidence, are needed in the future to further confirm the best transplantation strategy of MSCs in AKI. Systematic Review Registration: identifier https://CRD42022361199, https://www.crd.york.ac.uk/prospero.
Collapse
Affiliation(s)
- Pingping Wanyan
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Surgery, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Nenglian Li
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yong Huang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yali She
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Li Zhang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
4
|
Oka M, Kameishi S, Cho YK, Song SU, Grainger DW, Okano T. Clinically Relevant Mesenchymal Stem/Stromal Cell Sheet Transplantation Method for Kidney Disease. Tissue Eng Part C Methods 2023; 29:54-62. [PMID: 36719774 DOI: 10.1089/ten.tec.2022.0200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) is the irreversible loss of nephron function, leading to a build-up of toxins, prolonged inflammation, and ultimately fibrosis. Currently, no effective therapies exist to treat CKD due to its complex pathophysiology. Mesenchymal stem/stromal cell (MSC) transplantation is a promising strategy to treat kidney diseases, and multiple clinical trials are currently ongoing. We previously demonstrated that rat bone marrow-derived MSC (BMSC) sheets transplanted onto surgically decapsulated kidney exert therapeutic effects that suppressed renal fibrosis progression based on enhanced vascularization. However, there are clinical concerns about kidney decapsulation such as impaired glomerular filtration rate and Na+ ion and H2O excretion, leading to kidney dysfunction. Therefore, for transitioning from basic research to translational research using cell sheet therapy for kidney disease, it is essential to develop a new cell sheet transplantation strategy without kidney decapsulation. Significantly, we employed cell sheets engineered from clinical-grade human clonal BMSC (cBMSC) and transplanted these onto intact renal capsule to evaluate their therapeutic ability in the rat ischemia-reperfusion injury (IRI) model. Histological analysis 1-day postsurgery showed that cBMSC sheets engrafted well onto intact renal capsule. Interestingly, some grafted cBMSCs migrated into the renal parenchyma. At 1-3 days postsurgery (acute stage), grafted cBMSC sheets prevented tubular epithelial cell injury. At 28 days postsurgery (chronic phase), we observed that grafted cBMSC sheets suppressed renal fibrosis in the rat IRI model. Taken together, engineered cBMSC sheet transplantation onto intact renal capsule suppresses tubular epithelial cell injury and renal fibrosis, supporting further development as a possible clinically relevant strategy. Impact statement Chronic kidney disease (CKD) produces irreversible loss of nephron function, leading to toxemia, prolonged inflammation, and ultimately kidney fibrosis. Currently, no therapies exist to effectively treat CKD due to its complex pathophysiology. Mesenchymal stem/stromal cells (MSCs) are widely known to secret therapeutic paracrine factors, which is expected to provide a new effective therapy for unmet medical needs. However, unsatisfied MSC quality and administration methods to patients limit their therapeutic effects. In this study, we engineered clonal bone marrow-derived MSC sheets and established clinically relevant cell sheet transplantation strategy to treat renal fibrosis, which would improve MSC treatment for kidney disease.
Collapse
Affiliation(s)
- Masatoshi Oka
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.,Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA.,Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Sumako Kameishi
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.,Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA
| | - Yun-Kyoung Cho
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Sun U Song
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.,SCM Lifescience Co., Ltd., Republic of Korea
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, Salt Lake City, Utah, USA.,Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Dosing Limitation for Intra-Renal Arterial Infusion of Mesenchymal Stromal Cells. Int J Mol Sci 2022; 23:ijms23158268. [PMID: 35955404 PMCID: PMC9368110 DOI: 10.3390/ijms23158268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
The immunomodulatory and regenerative properties of mesenchymal stromal cells (MSCs) make MSC therapy a promising therapeutic strategy in kidney disease. A targeted MSC administration via the renal artery offers an efficient delivery method with limited spillover to other organs. Although local administration alleviates safety issues with MSCs in systemic circulation, it introduces new safety concerns in the kidneys. In a porcine model, we employed intra-renal arterial infusion of ten million allogenic adipose tissue-derived MSCs. In order to trigger any potential adverse events, a higher dose (hundred million MSCs) was also included. The kidney function was studied by magnetic resonance imaging after the MSC infusion and again at two weeks post-treatment. The kidneys were assessed by single kidney glomerular filtration rate (skGFR) measurements, histology and inflammation, and fibrosis-related gene expression. None of the measured parameters were affected immediately after the administration of ten million MSCs, but the administration of one hundred million MSCs induced severe adverse events. Renal perfusion was reduced immediately after MSC administration which coincided with the presence of microthrombi in the glomeruli and signs of an instant blood-mediated inflammatory reaction. At two weeks post-treatment, the kidneys that were treated with one hundred million MSCs showed reduced skGFR, signs of tissue inflammation, and glomerular and tubular damage. In conclusions, the intra-renal administration of ten million MSCs is well-tolerated by the porcine kidney. However, higher concentrations (one hundred million MSCs) caused severe kidney damage, implying that very high doses of intra-renally administered MSCs should be undertaken with caution.
Collapse
|
6
|
Chae HK, Suh N, Jang MJ, Kim YS, Kim BH, Aum J, Shin HC, You D, Hong B, Park HK, Kim CS. Efficacy and Safety of Human Bone Marrow-Derived Mesenchymal Stem Cells according to Injection Route and Dose in a Chronic Kidney Disease Rat Model. Int J Stem Cells 2022; 16:66-77. [PMID: 35483715 PMCID: PMC9978839 DOI: 10.15283/ijsc21146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/21/2022] [Accepted: 03/20/2022] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives We compared the efficacy and safety of human bone marrow-derived mesenchymal stem cells (hBMSC), delivered at different doses and via different injection routes in an animal model of chronic kidney disease. Methods and Results A total of ninety 12-week-old rats underwent 5/6 nephrectomy and randomized among nine groups: sham, renal artery control (RA-C), tail vein control (TV-C), renal artery low dose (RA-LD) (0.5×106 cells), renal artery moderate dose (RA-MD) (1.0×106 cells), renal artery high dose (RA-HD) (2.0×106 cells), tail vein low dose (TV-LD) (0.5×106 cells), tail vein moderate dose (TV-MD) (1.0×106 cells), and tail vein high dose (TV-HD) (2.0×106 cells). Renal function and mortality of rats were evaluated after hBMSC injection. Serum blood urea nitrogen was significantly lower in the TV-HD group at 2 weeks (p<0.01), 16 weeks (p<0.05), and 24 weeks (p<0.01) than in the TV-C group, as determined by one-way ANOVA. Serum creatinine was significantly lower in the TV-HD group at 24 weeks (p<0.05). At 8 weeks, creatinine clearance was significantly higher in the TV-MD and TV-HD groups (p<0.01, p<0.05) than in the TV-C group. In the safety evaluation, we observed no significant difference among the groups. Conclusions Our findings confirm the efficacy and safety of high dose (2×106 cells) injection of hBMSC via the tail vein.
Collapse
Affiliation(s)
- Han Kyu Chae
- Department of Urology, Gangneung Asan Medical Center, University of Ulsan College of Medicine, Gangneung, Korea
| | - Nayoung Suh
- Department of Pharmaceutical Engineering, College of Medical Sciences and Department of Medical Sciences, General Graduate School, Soon Chun Hyang University, Asan, Korea
| | - Myong Jin Jang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Yu Seon Kim
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bo Hyun Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joomin Aum
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Dalsan You
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bumsik Hong
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung Keun Park
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea,Correspondence to Choung-Soo Kim, Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea, Tel: +82-2-3010-3734, Fax: +82-2-477-8928, E-mail:
| |
Collapse
|
7
|
Milistetd M, Cavalcante C, Brunel H, Leite L, Mosko P, Malard PF, Michelotto Júnior P. Effects of intravenous administration of allogeneic mesenchymal stromal cells, derived from adipose tissue, in five dogs with chronic kidney disease. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT This study aimed to evaluate the safety of allogeneic adipose-derived mesenchymal stromal cell (aASC) treatment in dogs with chronic kidney disease (CKD) at the time of infusions and during the 120-day follow-up after the last infusion. Five dogs with CKD received three intravenous infusions of approximately 1×106?10% of aASCs per kilogram of body weight at 21-day intervals. Clinical and laboratory evaluations were performed at the time of each treatment and at 30 and 120 days after the last infusion. Adverse effects of the treatment were assessed using clinical observations, laboratory analyses, and owners’ answers about their dog’s behavior after infusions and during follow-up. The investigated animals did not present any adverse effects immediately after infusion or during the follow-up after the last infusion according to clinical and laboratory observations, as well as the dog owner’s descriptions. One treated animal showed a reduction in creatinine, from 3.5mg/dL to 2.4mg/dL from day 0 to day 153, gained 100g of body weight, and improved disposition. The study results demonstrate that aASC therapy is safe for dogs with CKD; however, further studies are needed to investigate these promising results.
Collapse
Affiliation(s)
- M. Milistetd
- Pontifícia Universidade Católica do Paraná, Brazil
| | | | | | - L.M.B. Leite
- Pontifícia Universidade Católica do Paraná, Brazil
| | | | | | | |
Collapse
|
8
|
Shang Z, Jiang Y, Guan X, Wang A, Ma B. Therapeutic Effects of Stem Cells From Different Source on Renal Ischemia- Reperfusion Injury: A Systematic Review and Network Meta-analysis of Animal Studies. Front Pharmacol 2021; 12:713059. [PMID: 34539400 PMCID: PMC8444551 DOI: 10.3389/fphar.2021.713059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
Objective: Although stem cell therapy for renal ischemia-reperfusion injury (RIRI) has made immense progress in animal studies, conflicting results have been reported by the investigators. Therefore, we aimed to systematically evaluate the effects of different stem cells on renal function of animals with ischemia-reperfusion injury and to compare the efficacies of stem cells from various sources. Methods: PubMed, Web of Science, Embase, Cochrane, CNKI, VIP, CBM, and WanFang Data were searched for records until April 2021. Two researchers independently conducted literature screening, data extraction, and literature quality evaluation. Results and conclusion: Seventy-two animal studies were included for data analysis. Different stem cells significantly reduced serum creatinine and blood urea nitrogen levels in the early and middle stages (1 and 7 days) compared to the negative control group, however there was no significant difference in the late stage among all groups (14 days); In the early stage (1 day), the renal histopathological score in the stem cell group was significantly lower than that in the negative control group, and there was no significant difference among these stem cells. In addition, there was no significant difference between stem cell and negative control in proliferation of resident cells, however, significantly less apoptosis of resident cells than negative control. In conclusion, the results showed that stem cells from diverse sources could improve the renal function of RIRI animals. ADMSCs and MDMSCs were the most-researched stem cells, and they possibly hold the highest therapeutic potential. However, the quality of evidence included in this study is low, and there are many risks of bias. The exact efficacy of the stem cells and the requirement for further clinical studies remain unclear.
Collapse
Affiliation(s)
- Zhizhong Shang
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yanbiao Jiang
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xin Guan
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Anan Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Bin Ma
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| |
Collapse
|
9
|
Zhou T, Liao C, Lin S, Lin W, Zhong H, Huang S. The Efficacy of Mesenchymal Stem Cells in Therapy of Acute Kidney Injury Induced by Ischemia-Reperfusion in Animal Models. Stem Cells Int 2020; 2020:1873921. [PMID: 32831852 PMCID: PMC7422493 DOI: 10.1155/2020/1873921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/03/2020] [Accepted: 07/18/2020] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), discovered and isolated from the bone marrow in the 1960s and with self-renewal capacity and multilineage differentiation potential, have valuable immunomodulatory abilities. Acute kidney injury (AKI) refers to rapid renal failure, which exhibits as quickly progressive decreasing excretion in few hours or days. This study was performed to assess the efficacy of MSCs in the treatment of AKI induced by ischemia-reperfusion using a meta-analysis method. A literature search using corresponding terms was performed in the following databases: Embase, Cochrane Library, PubMed, and ISI Web of Science databases up to Dec 31, 2019. Data for outcomes were identified, and the efficacy of MSCs for AKI was assessed using Cochrane Review Manager Version 5.3. Nineteen studies were eligible and recruited for this meta-analysis. MSC treatment can reduce the Scr levels at 1 day, 2 days, 3 days, 5 days, and >7 days (1 day: WMD = -0.56, 95% CI: -0.78, -0.34, P < 0.00001; 2 days: WMD = -0.58, 95% CI: -0.89, -0.28, P = 0.0002; 3 days: WMD = -0.65, 95% CI: -0.84, -0.45, P < 0.00001; 5 days: WMD = -0.35, 95% CI: -0.54, -0.16, P = 0.0003; and >7 days: WMD = -0.22, 95% CI: -0.36, -0.08, P = 0.002) and can reduce the levels of BUN at 1 day, 2 days, 3 days, and 5 days (1 day: WMD = -11.72, 95% CI: -18.80, -4.64, P = 0.001; 2 days: WMD = -33.60, 95% CI: -40.15, -27.05, P < 0.00001; 3 days: WMD = -21.14, 95% CI: -26.15, -16.14, P < 0.00001; and 5 days: WMD = -8.88, 95% CI: -11.06, -6.69, P < 0.00001), and it also can reduce the levels of proteinuria at 3 days and >7 days and alleviate the renal damage in animal models of AKI. In conclusion, MSCs might be a promising therapeutic agent for AKI induced by ischemia-reperfusion.
Collapse
Affiliation(s)
- Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Chunling Liao
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Shujun Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Wenshan Lin
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Hongzhen Zhong
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| | - Shuangyi Huang
- Department of Nephrology, The Second Affiliated Hospital, Shantou University Medical College, 515041 Shantou, China
| |
Collapse
|
10
|
Taylor A, Sharkey J, Harwood R, Scarfe L, Barrow M, Rosseinsky MJ, Adams DJ, Wilm B, Murray P. Multimodal Imaging Techniques Show Differences in Homing Capacity Between Mesenchymal Stromal Cells and Macrophages in Mouse Renal Injury Models. Mol Imaging Biol 2020; 22:904-913. [PMID: 31823201 PMCID: PMC7343735 DOI: 10.1007/s11307-019-01458-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The question of whether mesenchymal stromal cells (MSCs) home to injured kidneys remains a contested issue. To try and understand the basis for contradictory findings reported in the literature, our purpose here was to investigate whether MSC homing capacity is influenced by administration route, the type of injury model used, and/or the presence of exogenous macrophages. PROCEDURES To assess the viability, whole-body biodistribution, and intra-renal biodistribution of MSCs, we used a multimodal imaging strategy comprising bioluminescence and magnetic resonance imaging. The effect of administration route (venous or arterial) on the ability of MSCs to home to injured renal tissue, and persist there, was assessed in a glomerular injury model (induced by the nephrotoxicant, Adriamycin) and a tubular injury model induced by ischaemia-reperfusion injury (IRI). Exogenous macrophages were used as a positive control because these cells are known to home to injured mouse kidneys. To assess whether the homing capacity of MSCs can be influenced by the presence of exogenous macrophages, we used a dual-bioluminescence strategy that allowed the whole-body biodistribution of the two cell types to be monitored simultaneously in individual animals. RESULTS Following intravenous administration, no MSCs were detected in the kidneys, irrespective of whether the mice had been subjected to renal injury. After arterial administration via the left cardiac ventricle, MSCs transiently populated the kidneys, but no preferential homing or persistence was observed in injured renal tissue after unilateral IRI. An exception was when MSCs were co-administered with exogenous macrophages; here, we observed some homing of MSCs to the injured kidney. CONCLUSIONS Our findings strongly suggest that MSCs do not home to injured kidneys.
Collapse
Affiliation(s)
- Arthur Taylor
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Jack Sharkey
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Rachel Harwood
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Lauren Scarfe
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Michael Barrow
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | | | - Dave J Adams
- School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, L69 3BX, UK.
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK.
| |
Collapse
|
11
|
Ng NN, Thakor AS. Locoregional delivery of stem cell-based therapies. Sci Transl Med 2020; 12:eaba4564. [PMID: 32522806 DOI: 10.1126/scitranslmed.aba4564] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Interventional regenerative medicine (IRM) uses image-guided, minimally invasive procedures for the targeted delivery of stem cell-based therapies to regenerate, replace, or repair damaged organs. Although many cellular therapies have shown promise in the preclinical setting, clinical results have been suboptimal. Most intravenously delivered cells become trapped in the lungs and reticuloendothelial system, resulting in little therapy reaching target tissues. IRM aims to increase the efficacy of cell-based therapies by locoregional stem cell delivery via endovascular, endoluminal, or direct injection into tissues. This review highlights routes of delivery, disease states, and mechanisms of action involved in the targeted delivery of stem cells.
Collapse
Affiliation(s)
- Nathan Norton Ng
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Avnesh Sinh Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA.
| |
Collapse
|
12
|
Osman Y, Hamed SM, Barakat NM, Khater S, Gabr M, Mosbah A, Gaballah MA, Shaaban A. Prophylaxis against renal ischemia-reperfusion injury in canine model: Stem cell approach. INDIAN JOURNAL OF UROLOGY : IJU : JOURNAL OF THE UROLOGICAL SOCIETY OF INDIA 2020; 36:44-49. [PMID: 31983826 PMCID: PMC6961430 DOI: 10.4103/iju.iju_114_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction Stem cell therapy at the time of ischemia/reperfusion (I/R) injury has been hypothesized to attenuate the severity of acute kidney injury and to accelerate the regeneration process in lower animal models. Data in higher animal models is limited and discordant. We aimed to explore the reno-protective effects of stem cells on I/R related renal injury in a canine model. Materials and Methods Twenty-seven dogs that were treated with bone marrow-derived mesenchymal stem cells (BM-MSCs) were compared with another 27 dogs treated with adipose tissue-derived MSCs (AT-MSCs) following 90 min of warm ischemia to assess IR injury. Each group was divided into three subgroups (nine dogs each), according to the stem cell dose (5, 10, 15 × 106 in 500 μl volume) injected directly into the renal cortex after reperfusion. All dogs were re-evaluated by renogram, histopathology, and pro-inflammatory markers at 2 weeks, 2, and 3 months. Results In Group I, there was a mean reduction of creatinine clearance by 78%, 64%, and 74% at the three used doses, respectively, at 2 weeks. At 3 months, these kidneys regained a mean of 84%, 92%, and 72%, respectively, of its basal function. In Group II, the reduction of clearance was much more modest with mean of 14%, 6%, and 24% respectively at 2 weeks with more intense recovery of renal function by mean of 90%, 100%, and 76%, respectively, at 3 months. Group I had significantly more tubular necrosis and delayed regeneration compared with the Group II. Expressions of pro-inflammatory markers were upregulated in both the groups with a higher and more sustained expression in Group I. Conclusion Stem cells protected against ischemic reperfusion injury in a canine model. AT-MSCs provided better protection than BM-MSCs.
Collapse
Affiliation(s)
- Yasser Osman
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Sahar M Hamed
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Nashwa M Barakat
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Sherry Khater
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mahmoud Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ahmed Mosbah
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | | | - Atallah Shaaban
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Rbia N, Bulstra LF, Thaler R, Hovius SER, van Wijnen AJ, Shin AY. In Vivo Survival of Mesenchymal Stromal Cell-Enhanced Decellularized Nerve Grafts for Segmental Peripheral Nerve Reconstruction. J Hand Surg Am 2019; 44:514.e1-514.e11. [PMID: 30301645 DOI: 10.1016/j.jhsa.2018.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/09/2018] [Accepted: 07/18/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE Adipose-derived mesenchymal stromal cells (MSCs) have emerged as promising tools for peripheral nerve reconstruction. There is a paucity of information regarding the ultimate survivorship of implanted MSCs or whether these cells remain where they are placed. The aim of the present study was to track the in vivo distribution and survival of MSCs seeded on a decellularized nerve allograft reconstruction of a peripheral nerve defect using luciferase-based bioluminescence imaging (BLI). METHODS To determine the in vivo survivability of MSCs, autologous Lewis rat MSCs were stably labeled with luciferase by lentiviral particles. Labeled cells were dynamically seeded onto a Sprague Dawley decellularized rat nerve allograft and used to bridge a 10-mm sciatic nerve defect. The MSC survival was determined by performing in vivo BLI to detect living cells. Twelve animals were examined at 24 hours after implantation, 3, 7, 9, 11, and 14 days, and at daily intervals thereafter if signals were still present. RESULTS Labeled MSCs could be detected for up to 29 days. Gradually diminishing BLI signals were observed within the first week following implantation. Implanted MSCs were not detected anywhere other than the site of surgery. CONCLUSIONS The MSCs seeded on decellularized nerve allografts can survive in vivo but have finite survival after implantation. There was no evidence of migration of MSCs to surrounding tissues. CLINICAL RELEVANCE The findings support a therapeutic approach that combines MSCs with a biological scaffold for peripheral nerve surgery. It provides understanding of the viability and distribution of implanted MSCs, which is a prerequisite before clinical translation can be considered.
Collapse
Affiliation(s)
- Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Liselotte F Bulstra
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Steven E R Hovius
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
14
|
Abstract
The number of individuals affected by acute kidney injury (AKI) and chronic kidney disease (CKD) is constantly rising. In light of the limited availability of treatment options and their relative inefficacy, cell based therapeutic modalities have been studied. However, not many efforts are put into safety evaluation of such applications. The aim of this study was to review the existing published literature on adverse events reported in studies with genetically modified cells for treatment of kidney disease. A systematic review was conducted by searching PubMed and EMBASE for relevant articles published until June 2018. The search results were screened and relevant articles selected using pre-defined criteria, by two researchers independently. After initial screening of 6894 abstracts, a total number of 97 preclinical studies was finally included for full assessment. Of these, 61 (63%) presented an inappropriate study design for the evaluation of safety parameters. Only 4 studies (4%) had the optimal study design, while 32 (33%) showed sub-optimal study design with either direct or indirect evidence of adverse events. The high heterogeneity of studies included regarding cell type and number, genetic modification, administration route, and kidney disease model applied, combined with the consistent lack of appropriate control groups, makes a reliable safety evaluation of kidney cell-based therapies impossible. Only a limited number of relevant studies included looked into essential safety-related outcomes, such as inflammatory (48%), tumorigenic and teratogenic potential (12%), cell biodistribution (82%), microbiological safety with respect to microorganism contamination and latent viruses' reactivation (1%), as well as overall well-being and animal survival (19%). In conclusion, for benign cell-based therapies, well-designed pre-clinical studies, including all control groups required and good manufacturing processes securing safety, need to be done early in development. Preferably, this should be performed side by side with efficacy evaluation and according to the official guidelines of leading health organizations.
Collapse
|
15
|
Scarfe L, Taylor A, Sharkey J, Harwood R, Barrow M, Comenge J, Beeken L, Astley C, Santeramo I, Hutchinson C, Ressel L, Smythe J, Austin E, Levy R, Rosseinsky MJ, Adams DJ, Poptani H, Park BK, Murray P, Wilm B. Non-invasive imaging reveals conditions that impact distribution and persistence of cells after in vivo administration. Stem Cell Res Ther 2018; 9:332. [PMID: 30486897 PMCID: PMC6264053 DOI: 10.1186/s13287-018-1076-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Background Cell-based regenerative medicine therapies are now frequently tested in clinical trials. In many conditions, cell therapies are administered systemically, but there is little understanding of their fate, and adverse events are often under-reported. Currently, it is only possible to assess safety and fate of cell therapies in preclinical studies, specifically by monitoring animals longitudinally using multi-modal imaging approaches. Here, using a suite of in vivo imaging modalities to explore the fate of a range of human and murine cells, we investigate how route of administration, cell type and host immune status affect the fate of administered cells. Methods We applied a unique imaging platform combining bioluminescence, optoacoustic and magnetic resonance imaging modalities to assess the safety of different human and murine cell types by following their biodistribution and persistence in mice following administration into the venous or arterial system. Results Longitudinal imaging analyses (i) suggested that the intra-arterial route may be more hazardous than intravenous administration for certain cell types, (ii) revealed that the potential of a mouse mesenchymal stem/stromal cell (MSC) line to form tumours depended on administration route and mouse strain and (iii) indicated that clinically tested human umbilical cord (hUC)-derived MSCs can transiently and unexpectedly proliferate when administered intravenously to mice. Conclusions In order to perform an adequate safety assessment of potential cell-based therapies, a thorough understanding of cell biodistribution and fate post administration is required. The non-invasive imaging platform used here can expose not only the general organ distribution of these therapies, but also a detailed view of their presence within different organs and, importantly, tumourigenic potential. Our observation that the hUC-MSCs but not the human bone marrow (hBM)-derived MSCs persisted for a period in some animals suggests that therapies with these cells should proceed with caution. Electronic supplementary material The online version of this article (10.1186/s13287-018-1076-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren Scarfe
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK.,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Arthur Taylor
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK.,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Jack Sharkey
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK.,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Rachel Harwood
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK.,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Michael Barrow
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Joan Comenge
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lydia Beeken
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Cai Astley
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Ilaria Santeramo
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK.,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Claire Hutchinson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Lorenzo Ressel
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | | | | | - Raphael Levy
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Dave J Adams
- School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Harish Poptani
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK.,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Brian K Park
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK. .,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK. .,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK.
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK. .,Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK. .,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, UK.
| |
Collapse
|
16
|
Lee KW, Kim TM, Kim KS, Lee S, Cho J, Park JB, Kwon GY, Kim SJ. Renal Ischemia-Reperfusion Injury in a Diabetic Monkey Model and Therapeutic Testing of Human Bone Marrow-Derived Mesenchymal Stem Cells. J Diabetes Res 2018; 2018:5182606. [PMID: 30155487 PMCID: PMC6092988 DOI: 10.1155/2018/5182606] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/27/2018] [Accepted: 06/27/2018] [Indexed: 01/19/2023] Open
Abstract
Clinically, acute kidney injury (AKI) episodes in diabetes mellitus (DM) patients are associated with a cumulative risk of developing end-stage renal disease. In this study, we asked whether the severity of AKI induced by renal ischemia-reperfusion injury (IRI) is more prominent in DM than in non-DM control using a cynomolgus monkey (Macaca fascicularis) model. We also investigated whether human bone marrow-derived mesenchymal stem cells (hBM-MSCs) infused via the renal artery could ameliorate renal IRI in DM monkeys. The experimental data, including mortality rate, histologic findings, and urinary albumin secretion indicate that the severity of AKI was greater in DM monkeys than in control animals. Moreover, histological findings and qRT-PCR analysis of Ngal mRNA in renal biopsy tissue showed that hBM-MSC promoted the recovery of tubular damage caused by AKI. Serum analysis also revealed that the level of albumin and ALT was increased 24 and 48 hours after AKI, respectively, suggesting that AKI induced acute liver injury. We suggest that this nonhuman primate model could provide essential information about the renal and nonrenal impairment related to DM and help determine the clinical usefulness of MSCs in AKI.
Collapse
Affiliation(s)
- Kyo Won Lee
- Department of Surgery, Division of Transplantation, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Tae Min Kim
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, 1447 Pyeongchang-daero, Pyeongchang, Gangwon-do 25354, Republic of Korea
| | - Kyeong Sik Kim
- Department of Surgery, Division of Transplantation, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Seunghwan Lee
- Department of Surgery, Kyung Hee University School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Division of Transplantation, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Sung Joo Kim
- Department of Surgery, Division of Transplantation, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
17
|
Bernard O, Jeny F, Uzunhan Y, Dondi E, Terfous R, Label R, Sutton A, Larghero J, Vanneaux V, Nunes H, Boncoeur E, Planès C, Dard N. Mesenchymal stem cells reduce hypoxia-induced apoptosis in alveolar epithelial cells by modulating HIF and ROS hypoxic signaling. Am J Physiol Lung Cell Mol Physiol 2017; 314:L360-L371. [PMID: 29167125 DOI: 10.1152/ajplung.00153.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Distal lung diseases, such as pulmonary fibrosis or acute lung injury, are commonly associated with local alveolar hypoxia that may be deleterious through the stimulation of alveolar epithelial cell (AEC) apoptosis. In various murine models of alveolar injury, administration of allogenic human mesenchymal stem cells (hMSCs) exerts an overall protective paracrine effect, limiting lung inflammation and fibrosis. However, the precise mechanisms on lung cells themselves remain poorly understood. Here, we investigated whether hMSC-conditioned medium (hMSC-CM) would protect AECs from hypoxia-induced apoptosis and explored the mechanisms involved in this cytoprotective effect. Exposure of rat primary AECs to hypoxia (1.5% O2 for 24 h) resulted in hypoxia-inducible factor (HIF)-1α protein stabilization, partly dependent on reactive oxygen species (ROS) accumulation, and in a twofold increase in AEC apoptosis that was prevented by the HIF inhibitor 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl-indazole and the antioxidant drug N-acetyl cysteine. Incubation of AECs with hMSC-CM significantly reduced hypoxia-induced apoptosis. hMSC-CM decreased HIF-1α protein expression, as well as ROS accumulation through an increase in antioxidant enzyme activities. Expression of Bnip3 and CHOP, two proapoptotic targets of HIF-1α and ROS pathways, respectively, was suppressed by hMSC-CM, while Bcl-2 expression was restored. The paracrine protective effect of hMSC was partly dependent on keratinocyte growth factor and hepatocyte growth factor secretion, preventing ROS and HIF-1α accumulation.
Collapse
Affiliation(s)
- Olivier Bernard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Florence Jeny
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Yurdagül Uzunhan
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Elisabetta Dondi
- Institut National de la Santé et de la Recherche Médicale, UMR 978, Bobigny, France
| | - Rahma Terfous
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Rabab Label
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Angela Sutton
- Institut National de la Santé et de la Recherche Médicale, UMR 1148, Laboratory for Vascular Translational Science, UFR Santé Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, Groupe Biothérapies et Glycoconjugués, Bobigny, France
| | - Jérôme Larghero
- AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et Centre d'Investigation Clinique de Biothérapies, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, Paris , France
| | - Valérie Vanneaux
- AP-HP, Hôpital Saint Louis, Unité de Thérapie Cellulaire et Centre d'Investigation Clinique de Biothérapies, Paris, France, Université Paris Diderot, Sorbonne Paris Cité, Paris , France
| | - Hilario Nunes
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Emilie Boncoeur
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| | - Carole Planès
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France.,Assistance publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Nicolas Dard
- Université Paris 13, Sorbonne Paris Cité, Laboratoire Hypoxie & Poumon, EA 2363, Bobigny, France
| |
Collapse
|
18
|
Ranghino A, Bruno S, Bussolati B, Moggio A, Dimuccio V, Tapparo M, Biancone L, Gontero P, Frea B, Camussi G. The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Res Ther 2017; 8:24. [PMID: 28173878 PMCID: PMC5297206 DOI: 10.1186/s13287-017-0478-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/28/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) and renal stem/progenitors improve the recovery of acute kidney injury (AKI) mainly through the release of paracrine mediators including the extracellular vesicles (EVs). Several studies have reported the existence of a resident population of MSCs within the glomeruli (Gl-MSCs). However, their contribution towards kidney repair still remains to be elucidated. The aim of the present study was to evaluate whether Gl-MSCs and Gl-MSC-EVs promote the recovery of AKI induced by ischemia-reperfusion injury (IRI) in SCID mice. Moreover, the effects of Gl-MSCs and Gl-MSC-EVs were compared with those of CD133+ progenitor cells isolated from human tubules of the renal cortical tissue (T-CD133+ cells) and their EVs (T-CD133+-EVs). Methods IRI was performed in mice by clamping the left renal pedicle for 35 minutes together with a right nephrectomy. Immediately after reperfusion, the animals were divided in different groups to be treated with: Gl-MSCs, T-CD133+ cells, Gl-MSC-EVs, T-CD133+-EVs or vehicle. To assess the role of vesicular RNA, EVs were either isolated by floating to avoid contamination of non-vesicles-associated RNA or treated with a high dose of RNase. Mice were sacrificed 48 hours after surgery. Results Gl-MSCs, and Gl-MSC-EVs both ameliorate kidney function and reduce the ischemic damage post IRI by activating tubular epithelial cell proliferation. Furthermore, T-CD133+ cells, but not their EVs, also significantly contributed to the renal recovery after IRI compared to the controls. Floating EVs were effective while RNase-inactivated EVs were ineffective. Analysis of the EV miRnome revealed that Gl-MSC-EVs selectively expressed a group of miRNAs, compared to EVs derived from fibroblasts, which were biologically ineffective in IRI. Conclusions In this study, we demonstrate that Gl-MSCs may contribute in the recovery of mice with AKI induced by IRI primarily through the release of EVs. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0478-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Ranghino
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, Corso Dogliotti 14, Torino, 10126, Italy.
| | - Stefania Bruno
- Department of Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Aldo Moggio
- Department of Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Veronica Dimuccio
- Department of Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Marta Tapparo
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, Corso Dogliotti 14, Torino, 10126, Italy
| | - Luigi Biancone
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, Corso Dogliotti 14, Torino, 10126, Italy
| | - Paolo Gontero
- Department of Surgical Sciences, Città della Salute e della Scienza, University of Turin, Torino, Italy
| | - Bruno Frea
- Department of Surgical Sciences, Città della Salute e della Scienza, University of Turin, Torino, Italy
| | - Giovanni Camussi
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, Corso Dogliotti 14, Torino, 10126, Italy
| |
Collapse
|
19
|
Cao J, Hou S, Ding H, Liu Z, Song M, Qin X, Wang X, Yu M, Sun Z, Liu J, Sun S, Xiao P, Lv Q, Fan H. In Vivo Tracking of Systemically Administered Allogeneic Bone Marrow Mesenchymal Stem Cells in Normal Rats through Bioluminescence Imaging. Stem Cells Int 2016; 2016:3970942. [PMID: 27610137 PMCID: PMC5005574 DOI: 10.1155/2016/3970942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/26/2016] [Accepted: 07/03/2016] [Indexed: 01/14/2023] Open
Abstract
Recently, mesenchymal stem cells (MSCs) are increasingly used as a panacea for multiple types of disease short of effective treatment. Dozens of clinical trials published demonstrated strikingly positive therapeutic effects of MSCs. However, as a specific agent, little research has focused on the dynamic distribution of MSCs after in vivo administration. In this study, we track systemically transplanted allogeneic bone marrow mesenchymal stem cells (BMSCs) in normal rats through bioluminescence imaging (BLI) in real time. Ex vivo organ imaging, immunohistochemistry (IHC), and RT-PCR were conducted to verify the histological distribution of BMSCs. Our results showed that BMSCs home to the dorsal skin apart from the lungs and kidneys after tail vein injection and could not be detected 14 days later. Allogeneic BMSCs mainly appeared not at the parenchymatous organs but at the subepidermal connective tissue and adipose tissue in healthy rats. There were no significant MSCs-related adverse effects except for transient decrease in neutrophils. These findings will provide experimental evidences for a better understanding of the biocharacteristics of BMSCs.
Collapse
Affiliation(s)
- Juan Cao
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Shike Hou
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Hui Ding
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Ziquan Liu
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Meijuan Song
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Xiaojing Qin
- Department of Pathology, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
| | - Xue Wang
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Mengyang Yu
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Zhiguang Sun
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Jinyang Liu
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Shuli Sun
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Peixin Xiao
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Qi Lv
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| | - Haojun Fan
- Institute of Disaster Medicine and Public Health, Affiliated Hospital of Logistic University of Chinese People's Armed Police Force, Tianjin, China
- Key Laboratory of Emergency and Disaster Medicine in Chinese People's Liberation Army (PLA), Tianjin 300162, China
| |
Collapse
|
20
|
Sharkey J, Scarfe L, Santeramo I, Garcia-Finana M, Park BK, Poptani H, Wilm B, Taylor A, Murray P. Imaging technologies for monitoring the safety, efficacy and mechanisms of action of cell-based regenerative medicine therapies in models of kidney disease. Eur J Pharmacol 2016; 790:74-82. [PMID: 27375077 PMCID: PMC5063540 DOI: 10.1016/j.ejphar.2016.06.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022]
Abstract
The incidence of end stage kidney disease is rising annually and it is now a global public health problem. Current treatment options are dialysis or renal transplantation, which apart from their significant drawbacks in terms of increased morbidity and mortality, are placing an increasing economic burden on society. Cell-based Regenerative Medicine Therapies (RMTs) have shown great promise in rodent models of kidney disease, but clinical translation is hampered due to the lack of adequate safety and efficacy data. Furthermore, the mechanisms whereby the cell-based RMTs ameliorate injury are ill-defined. For instance, it is not always clear if the cells directly replace damaged renal tissue, or whether paracrine effects are more important. Knowledge of the mechanisms responsible for the beneficial effects of cell therapies is crucial because it could lead to the development of safer and more effective RMTs in the future. To address these questions, novel in vivo imaging strategies are needed to monitor the biodistribution of cell-based RMTs and evaluate their beneficial effects on host tissues and organs, as well as any potential adverse effects. In this review we will discuss how state-of-the-art imaging modalities, including bioluminescence, magnetic resonance, nuclear imaging, ultrasound and an emerging imaging technology called multispectral optoacoustic tomography, can be used in combination with various imaging probes to track the fate and biodistribution of cell-based RMTs in rodent models of kidney disease, and evaluate their effect on renal function.
Collapse
Affiliation(s)
- Jack Sharkey
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Lauren Scarfe
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Ilaria Santeramo
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Marta Garcia-Finana
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Brian K Park
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Harish Poptani
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Arthur Taylor
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK.
| |
Collapse
|
21
|
Improving the outcome of kidney transplantation by ameliorating renal ischemia reperfusion injury: lost in translation? J Transl Med 2016; 14:20. [PMID: 26791565 PMCID: PMC4721068 DOI: 10.1186/s12967-016-0767-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/20/2015] [Indexed: 01/03/2023] Open
Abstract
Kidney transplantation is the treatment of choice in patients with end stage renal disease. During kidney transplantation ischemia reperfusion injury (IRI) occurs, which is a risk factor for acute kidney injury, delayed graft function and acute and chronic rejection. Kidneys from living donors show a superior short- and long-term graft survival compared with deceased donors. However, the shortage of donor kidneys has resulted in expansion of the donor pool by using not only living- and brain death donors but also kidneys from donation after circulatory death and from extended criteria donors. These grafts are associated with an increased sensitivity to IRI and decreased graft outcome due to prolonged ischemia and donor comorbidity. Therefore, preventing or ameliorating IRI may improve graft survival. Animal experiments focus on understanding the mechanism behind IRI and try to find methods to minimize IRI either before, during or after ischemia. This review evaluates the different experimental strategies that have been investigated to prevent or ameliorate renal IRI. In addition, we review the current state of translation to the clinical setting. Experimental research has contributed to the development of strategies to prevent or ameliorate IRI, but promising results in animal studies have not yet been successfully translated to clinical use.
Collapse
|
22
|
Burks SR, Nguyen BA, Tebebi PA, Kim SJ, Bresler MN, Ziadloo A, Street JM, Yuen PST, Star RA, Frank JA. Pulsed focused ultrasound pretreatment improves mesenchymal stromal cell efficacy in preventing and rescuing established acute kidney injury in mice. Stem Cells 2016; 33:1241-53. [PMID: 25640064 DOI: 10.1002/stem.1965] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/28/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022]
Abstract
Animal studies have shown that mesenchymal stromal cell (MSC) infusions improve acute kidney injury (AKI) outcomes when administered early after ischemic/reperfusion injury or within 24 hours after cisplatin administration. These findings have spurred several human clinical trials to prevent AKI. However, no specific therapy effectively treats clinically obvious AKI or rescues renal function once advanced injury is established. We investigated if noninvasive image-guided pulsed focused ultrasound (pFUS) could alter the kidney microenvironment to enhance homing of subsequently infused MSC. To examine the efficacy of pFUS-enhanced cell homing in disease, we targeted pFUS to kidneys to enhance MSC homing after cisplatin-induced AKI. We found that pFUS enhanced MSC homing at 1 day post-cisplatin, prior to renal functional deficits, and that enhanced homing improved outcomes of renal function, tubular cell death, and regeneration at 5 days post-cisplatin compared to MSC alone. We then investigated whether pFUS+MSC therapy could rescue established AKI. MSC alone at 3 days post-cisplatin, after renal functional deficits were obvious, significantly improved 7-day survival of animals. Survival was further improved by pFUS and MSC. pFUS prior to MSC injections increased IL-10 production by MSC that homed to kidneys and generated an anti-inflammatory immune cell profile in treated kidneys. This study shows pFUS is a neoadjuvant approach to improve MSC homing to diseased organs. pFUS with MSC better prevents AKI than MSC alone and allows rescue therapy in established AKI, which currently has no meaningful therapeutic options.
Collapse
Affiliation(s)
- Scott R Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA; Imaging Sciences Training Program, Clinical Center and National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bussolati B, Camussi G. Therapeutic use of human renal progenitor cells for kidney regeneration. Nat Rev Nephrol 2015; 11:695-706. [PMID: 26241019 DOI: 10.1038/nrneph.2015.126] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability of the human kidney to repair itself is limited. Consequently, repeated injury can trigger a maladaptive response that is characterized by fibrosis and loss of renal function. The transcription patterns that characterize nephrogenesis in fetal renal progenitor cells (RPCs) are only partially activated during renal repair in adults. Nevertheless, evidence suggests that segment-restricted progenitor resident cells support renal healing in adults. In this Review, we discuss the evidence for the existence of functional human RPCs in adults and their role in renal repair, and consider the controversial issue of whether RPCs are a fixed population or arise through phenotypical plasticity of tubular cells that is mediated by the microenvironment. We also discuss the strategies for generating renal progenitor cells from pluripotent stem cells or differentiated cells and their use in therapy. Finally, we examine preclinical data on the therapeutic use of human fetal cells, adult progenitor cells and adult renal cells.
Collapse
Affiliation(s)
- Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| |
Collapse
|
24
|
K S, P R, T W, G N D, C P, P VR. In Vivo Bioluminescence Imaging - A Suitable Method to Track Mesenchymal Stromal Cells in a Skeletal Muscle Trauma. Open Orthop J 2015; 9:262-9. [PMID: 26312108 PMCID: PMC4541295 DOI: 10.2174/1874325001509010262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/26/2015] [Accepted: 05/18/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Cell-based therapies have emerged during the last decade in various clinical fields. Especially mesenchymal stromal cells (MSCs) have been used in pre-clinical and clinical applications in cardiovascular, neurodegenerative and musculoskeletal disorders. In order to validate survival and viability as well as possible engraftment of MSCs into the host tissue a live cell imaging technique is needed that allows non-invasive, temporal imaging of cellular kinetics as well as evaluation of cell viability after transplantation. In this study we used luciferase-based bioluminescence imaging (BLI) to investigate the survival of autologous MSCs transplanted into a severely crushed soleus muscle of the rats. Furthermore we compared local as well as intra-arterial (i.a.) administration of cells and analyzed if luciferase transduced MSCs depict the same characteristics in vitro as non-transduced MSCs. We could show that transduction of MSCs does not alter their in vitro characteristics, thus, transduced MSCs display the same differentiation, proliferation and migration capacity as non-transduced cells. Using BLI we could track MSCs transplanted into a crushed soleus muscle until day 7 irrespective of local or i.a. APPLICATION Hence, our study proves that luciferase-based BLI is a suitable method for in vivo tracking of MSCs in skeletal muscle trauma in rats.
Collapse
Affiliation(s)
- Strohschein K
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Radojewski P
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Winkler T
- Department of Orthopaedics, Trauma and Reconstruction Surgery, Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Duda G N
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Perka C
- Department of Orthopaedics, Trauma and Reconstruction Surgery, Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - von Roth P
- Department of Orthopaedics, Trauma and Reconstruction Surgery, Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
25
|
Schneider N, Gonçalves FDC, Pinto FO, Lopez PLDC, Araújo AB, Pfaffenseller B, Passos EP, Cirne-Lima EO, Meurer L, Lamers ML, Paz AH. Dexamethasone and azathioprine promote cytoskeletal changes and affect mesenchymal stem cell migratory behavior. PLoS One 2015; 10:e0120538. [PMID: 25756665 PMCID: PMC4355407 DOI: 10.1371/journal.pone.0120538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/23/2015] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids and immunosuppressive drugs are commonly used to treat inflammatory disorders, such as inflammatory bowel disease (IBD), and despite a few improvements, the remission of IBD is still difficult to maintain. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have emerged as regulators of the immune response, and their viability and activation of their migratory properties are essential for successful cell therapy. However, little is known about the effects of immunosuppressant drugs used in IBD treatment on MSC behavior. The aim of this study was to evaluate MSC viability, nuclear morphometry, cell polarity, F-actin and focal adhesion kinase (FAK) distribution, and cell migratory properties in the presence of the immunosuppressive drugs azathioprine (AZA) and dexamethasone (DEX). After an initial characterization, MSCs were treated with DEX (10 μM) or AZA (1 μM) for 24 hrs or 7 days. Neither drug had an effect on cell viability or nuclear morphometry. However, AZA treatment induced a more elongated cell shape, while DEX was associated with a more rounded cell shape (P < 0.05) with a higher presence of ventral actin stress fibers (P < 0.05) and a decrease in protrusion stability. After 7 days of treatment, AZA improved the cell spatial trajectory (ST) and increased the migration speed (24.35%, P < 0.05, n = 4), while DEX impaired ST and migration speed after 24 hrs and 7 days of treatment (-28.69% and -25.37%, respectively; P < 0.05, n = 4). In conclusion, our data suggest that these immunosuppressive drugs each affect MSC morphology and migratory capacity differently, possibly impacting the success of cell therapy.
Collapse
Affiliation(s)
- Natália Schneider
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Fabiany da Costa Gonçalves
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Fernanda Otesbelgue Pinto
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Patrícia Luciana da Costa Lopez
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Anelise Bergmann Araújo
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Bianca Pfaffenseller
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Luíse Meurer
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Marcelo Lazzaron Lamers
- Morphological Sciences Department, Health Basic Sciences Institute, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Ana Helena Paz
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, CEP 90035-903, Porto Alegre, RS, Brazil
- Morphological Sciences Department, Health Basic Sciences Institute, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
26
|
Tran C, Damaser MS. The potential role of stem cells in the treatment of urinary incontinence. Ther Adv Urol 2015; 7:22-40. [PMID: 25642292 DOI: 10.1177/1756287214553968] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Voiding dysfunction encompasses a wide range of urologic disorders including stress urinary incontinence and overactive bladder that have a detrimental impact on the quality of life of millions of men and women worldwide. In recent years, we have greatly expanded our understanding of the pathophysiology of these clinical conditions. However, current gold standard therapies often provide symptomatic relief without targeting the underlying etiology of disease development. Recently, the use of stem cells to halt disease progression and reverse underlying pathology has emerged as a promising method to restore normal voiding function. Stem cells are classically thought to aid in tissue repair via their ability for multilineage differentiation and self-renewal. They may also exert a therapeutic effect via the secretion of bioactive factors that direct other stem and progenitor cells to the area of injury, and that also possess antiapoptotic, antiscarring, neovascularization, and immunomodulatory properties. Local injections of mesenchymal, muscle-derived, and adipose-derived stem cells have all yielded successful outcomes in animal models of mechanical, nerve, or external urethral sphincter injury in stress urinary incontinence. Similarly, direct injection of mesenchymal and adipose-derived stem cells into the bladder in animal models of bladder overactivity have demonstrated efficacy. Early clinical trials using stem cells for the treatment of stress urinary incontinence in both male and female patients have also achieved promising functional results with minimal adverse effects. Although many challenges remain to be addressed prior to the clinical implementation of this technology, novel stem-cell-based therapies are an exciting potential therapy for voiding dysfunction.
Collapse
Affiliation(s)
- Christine Tran
- Glickman Urological and Kidney Institute, The Cleveland Clinic, USA
| | - Margot S Damaser
- The Cleveland Clinic, Department of Biomedical Engineering, 9500 Euclid Avenue ND20, Cleveland, OH 44195, USA
| |
Collapse
|
27
|
Cell-based therapy for acute organ injury: preclinical evidence and ongoing clinical trials using mesenchymal stem cells. Anesthesiology 2014; 121:1099-121. [PMID: 25211170 DOI: 10.1097/aln.0000000000000446] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Critically ill patients often suffer from multiple organ failures involving lung, kidney, liver, or brain. Genomic, proteomic, and metabolomic approaches highlight common injury mechanisms leading to acute organ failure. This underlines the need to focus on therapeutic strategies affecting multiple injury pathways. The use of adult stem cells such as mesenchymal stem or stromal cells (MSC) may represent a promising new therapeutic approach as increasing evidence shows that MSC can exert protective effects following injury through the release of promitotic, antiapoptotic, antiinflammatory, and immunomodulatory soluble factors. Furthermore, they can mitigate metabolomic and oxidative stress imbalance. In this work, the authors review the biological capabilities of MSC and the results of clinical trials using MSC as therapy in acute organ injuries. Although preliminary results are encouraging, more studies concerning safety and efficacy of MSC therapy are needed to determine their optimal clinical use. (ANESTHESIOLOGY 2014; 121:1099-121).
Collapse
|
28
|
Using stem and progenitor cells to recapitulate kidney development and restore renal function. Curr Opin Organ Transplant 2014; 19:140-4. [PMID: 24480967 DOI: 10.1097/mot.0000000000000052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW There is considerable interest in the idea of generating stem and precursor cells that can differentiate into kidney cells and be used to treat kidney diseases. Within this field, we highlight recent research articles focussing on mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and kidney-derived stem/progenitor cells (KSPCs). RECENT FINDINGS In preclinical studies, MSCs ameliorate varied acute and chronic kidney diseases. Their efficacy depends on immunomodulatory and paracrine properties but MSCs do not differentiate into functional kidney epithelia. iPSCs can be derived from healthy individuals and from kidney patients by forced expression of precursor genes. Like ESCs, iPSCs are pluripotent and so theoretically they have the potential to form functional kidney epithelia when used therapeutically. KSPCs, existing as cell subsets within adult and developing kidneys, constitute attractive future therapeutic agents. SUMMARY Results from preclinical studies are encouraging but caution is required regarding potential human therapeutic applications because molecular, morphological and functional characterization of 'kidney cells' generated from ECSs, iPSCs, KSPCs have not been exhaustive. The long-term safety of renal stem and precursor cells needs more study, including potential negative effects on renal growth and their potential for tumor formation.
Collapse
|
29
|
Zhu XY, Lerman A, Lerman LO. Concise review: mesenchymal stem cell treatment for ischemic kidney disease. Stem Cells 2014; 31:1731-6. [PMID: 23766020 DOI: 10.1002/stem.1449] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/30/2013] [Accepted: 05/15/2013] [Indexed: 12/21/2022]
Abstract
Ischemic kidney diseases are common clinical entities that bear high mortality and morbidity and may lead to irreversible loss of kidney function. Their pathophysiology is multifaceted, involves complex hormonal-immunological-cellular interactions, and leads to damage in multiple cell types, which is often resistant to conventional therapy. Thus, novel strategies are needed to repair the renal parenchyma and preserve kidney function. Mesenchymal stem cells (MSC) confer renal protection through paracrine/endocrine effects and to some degree possibly by direct engraftment. Their anti-inflammatory and immune-modulatory properties target multiple cascades in the mechanisms of ischemic kidney disease. This review focuses on recent progress on the use of MSC to prevent kidney injury in ischemic kidney injury, with a focus on the chronic form.
Collapse
Affiliation(s)
- Xiang-Yang Zhu
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
30
|
Grange C, Moggio A, Tapparo M, Porta S, Camussi G, Bussolati B. Protective effect and localization by optical imaging of human renal CD133+ progenitor cells in an acute kidney injury model. Physiol Rep 2014; 2:e12009. [PMID: 24793983 PMCID: PMC4098737 DOI: 10.14814/phy2.12009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent approaches of regenerative medicine can offer a therapeutic option for patients undergoing acute kidney injury. In particular, mesenchymal stem cells were shown to ameliorate renal function and recovery after acute damage. We here evaluated the protective effect and localization of CD133+ renal progenitors from the human inner medulla in a model of glycerol‐induced acute tubular damage and we compared the results with those obtained with bone marrow‐derived mesenchymal stem cells. We found that CD133+ progenitor cells promoted the recovery of renal function, preventing tubular cell necrosis and stimulating resident cell proliferation and survival, similar to mesenchymal stem cells. In addition, by optical imaging analysis, CD133+ progenitor cells accumulated within the renal tissue, and a reduced entrapment in lung, spleen, and liver was observed. Mesenchymal stem cells were detectable at similar levels in the renal tissue, but a higher signal was present in extrarenal organs. Both cell types produced several cytokines/growth factors, suggesting that a combination of different mediators is involved in their biological action. These results indicate that human CD133+ progenitor cells are renotropic and able to improve renal regeneration in acute kidney injury. In the present study, we found that administration of human CD133+ renal progenitors promoted renal repair after murine AKI, similar to mesenchymal stem cells. In addition, these cells showed a high renal localization evaluated by optical imaging analysis, and the production of renoprotective factors. Mesenchymal stem cells were detectable at similar levels in the renal tissue, but a higher signal was present in extrarenal organs.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, University of Torino, Torino, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Cai J, Yu X, Xu R, Fang Y, Qian X, Liu S, Teng J, Ding X. Maximum efficacy of mesenchymal stem cells in rat model of renal ischemia-reperfusion injury: renal artery administration with optimal numbers. PLoS One 2014; 9:e92347. [PMID: 24637784 PMCID: PMC3956922 DOI: 10.1371/journal.pone.0092347] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/20/2014] [Indexed: 12/15/2022] Open
Abstract
Backgrounds Despite the potential therapeutic benefits, cell therapy in renal ischemia-reperfusion (I/R) injury is currently limited by low rates of cell engraftment after systemic delivery. In this study, we investigate whether locally administration through renal artery can enhance the migration and therapeutic potential of mesenchymal stem cells (MSCs) in ischemic kidney. Methods The model of renal I/R injury was induced by 45 min occlusion of the left renal pedicle and right nephrectomy in rat. Followed by reperfusion, graded doses of CM-Dil labeled MSCs were implanted via three routes: tail vein (TV), carotid artery (CA), and renal artery (RA). Renal blood flow was evaluated by color and spectral Doppler ultrasound at 1 h and 24 h post-I/R. All the samples were collected for analysis at 24 h post-I/R. Results After injection of 1×106 MSCs, RA group showed obviously increased renal retention of grafted MSCs compared with TV and CA group; however, the renal function was even further deteriorated. When graded doses of MSCs, the maximal therapeutic efficiency was achieved with renal artery injection of 1×105 MSCs, which was significantly better than TV and CA group of 1×106 MSCs. In addition, further fluorescent microscopic and ultrasonic examination confirmed that the aggravated renal dysfunction in RA group was due to renal hypoperfusion caused by cell occlusion. Conclusion Administration route and dosage are two critical factors determining the efficiency of cell therapy and 1×105 MSCs injected through renal artery produces the most dramatic improvement in renal function and morphology in rat model of renal I/R injury.
Collapse
Affiliation(s)
- Jieru Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rende Xu
- Department of Cardiology, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqin Qian
- Department of Ultrasonography, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shaopeng Liu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Teng
- Blood Purification Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Aggarwal S, Moggio A, Bussolati B. Concise review: stem/progenitor cells for renal tissue repair: current knowledge and perspectives. Stem Cells Transl Med 2013; 2:1011-9. [PMID: 24167320 DOI: 10.5966/sctm.2013-0097] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The kidney is a specialized low-regenerative organ with several different types of cellular lineages; however, the identity of renal stem/progenitor cells with nephrogenic potential and their preferred niche(s) are largely unknown and debated. Most of the therapeutic approaches to kidney regeneration are based on administration of cells proven to enhance intrinsic reparative capabilities of the kidney. Endogenous or exogenous cells of different sources were tested in rodent models of ischemia-reperfusion, acute kidney injury, or chronic disease. The translation to clinics is at the moment focused on the role of mesenchymal stem cells. In addition, bioproducts from stem/progenitor cells, such as extracellular vesicles, are likely a new promising approach for reprogramming resident cells. This concise review reports the current knowledge about resident or exogenous stem/progenitor populations and their derived bioproducts demonstrating therapeutic effects in kidney regeneration upon injury. In addition, possible approaches to nephrogenesis and organ generation using organoids, decellularized kidneys, and blastocyst complementation are surveyed.
Collapse
Affiliation(s)
- Shikhar Aggarwal
- Department of Molecular Biotechnology and Life Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | | |
Collapse
|
33
|
Kholodenko IV, Konieva AA, Kholodenko RV, Yarygin KN. Molecular mechanisms of migration and homing of intravenously transplanted mesenchymal stem cells. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2050-1218-2-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|