1
|
Stability Analysis and Cauchy Matrix of a Mathematical Model of Hepatitis B Virus with Control on Immune System near Neighborhood of Equilibrium Free Point. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mathematical models are useful tools to describe the dynamics of infection and predict the role of possible drug combinations. In this paper, we present an analysis of a hepatitis B virus (HBV) model including cytotoxic T lymphocytes (CTL) and antibody responses, under distributed feedback control, expressed as an integral form to predict the effect of a combination treatment with interleukin-2 (IL-2). The method presented in this paper is based on the symmetry properties of Cauchy matrices C(t,s), which allow us to construct and analyze the stability of corresponding integro-differential systems.
Collapse
|