1
|
Winnicki W, Fichtenbaum A, Mitulovič G, Herkner H, Regele F, Baier M, Zelzer S, Wagner L, Sengoelge G. Individualization of Mycophenolic Acid Therapy through Pharmacogenetic, Pharmacokinetic and Pharmacodynamic Testing. Biomedicines 2022; 10:2882. [PMID: 36359401 PMCID: PMC9687418 DOI: 10.3390/biomedicines10112882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 09/09/2024] Open
Abstract
Mycophenolic acid (MPA) is a widely used immunosuppressive agent and exerts its effect by inhibiting inosine 5'-monophosphate dehydrogenase (IMPDH), the main regulating enzyme of purine metabolism. However, significant unexplained differences in the efficacy and tolerability of MPA therapy pose a clinical challenge. Therefore, broad pharmacogenetic, pharmacokinetic, and pharmacodynamic approaches are needed to individualize MPA therapy. In this prospective cohort study including 277 renal transplant recipients, IMPDH2 rs11706052 SNP status was assessed by genetic sequencing, and plasma MPA trough levels were determined by HPLC and IMPDH enzyme activity in peripheral blood mononuclear cells (PBMCs) by liquid chromatography-mass spectrometry. Among the 277 patients, 84 were identified with episodes of biopsy-proven rejection (BPR). No association was found between rs11706052 SNP status and graft rejection (OR 1.808, and 95% CI, 0.939 to 3.479; p = 0.076). Furthermore, there was no association between MPA plasma levels and BPR (p = 0.69). However, the patients with graft rejection had a significantly higher predose IMPDH activity in PBMCs compared to the controls without rejection at the time of biopsy (110.1 ± 50.2 vs. 95.2 ± 45.4 pmol/h; p = 0.001), and relative to the baseline IMPDH activity before transplantation (p = 0.042). Our results suggest that individualization of MPA therapy, particularly through pharmacodynamic monitoring of IMPDH activity in PBMCs, has the potential to improve the clinical outcomes of transplant patients.
Collapse
Affiliation(s)
- Wolfgang Winnicki
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Fichtenbaum
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Goran Mitulovič
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald Herkner
- Department of Emergency Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Florina Regele
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Baier
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria
| | - Ludwig Wagner
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Guerkan Sengoelge
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Jiang Z, Hu N. Effect of UGT polymorphisms on pharmacokinetics and adverse reactions of mycophenolic acid in kidney transplant patients. Pharmacogenomics 2021; 22:1019-1040. [PMID: 34581204 DOI: 10.2217/pgs-2021-0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycophenolic acid (MPA) is a common immunosuppressive drug for kidney transplantation patients, and is characterized by a narrow therapeutic index and significant individual variability. UGTs are the main enzymes responsible for the metabolism of MPA. Although, many studies have focused on the relationship between UGT polymorphisms and pharmacokinetics and adverse reactions of MPA, the conclusion are controversial. We reviewed the relevant literature and summarized the significant influences of UGT polymorphisms, such as UGT1A8 (rs1042597, rs17863762), UGT1A9 (rs72551330, rs6714486, rs17868320, rs2741045, rs2741045) and UGT2B7 (rs7438135, rs7439366, rs7662029), on the pharmacokinetics of MPA and its metabolites and adverse reactions. The review provides a reference for guiding the individualized administration of MPA and reducing adverse reactions to MPA.
Collapse
Affiliation(s)
- Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Jiangsu Province, Changzhou, 213000, China
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Jiangsu Province, Changzhou, 213000, China
| |
Collapse
|
3
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Ciftci HS, Demir E, Karadeniz MS, Tefik T, Nane I, Oguz FS, Aydin F, Turkmen A. Influence of uridine diphosphate-glucuronosyltransferases (1A9) polymorphisms on mycophenolic acid pharmacokinetics in patients with renal transplant. Ren Fail 2018; 40:395-402. [PMID: 30012031 PMCID: PMC6052413 DOI: 10.1080/0886022x.2018.1489285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: There are differences in pharmacokinetic of mycophenolic acid among individuals. The UGT1A9 enzyme is of special interest since it is the main enzyme involved in the glucuronidation of MPA. Single nucleotide polymorphisms in the UGT1A9 gene may be responsible for individual differences in the pharmacokinetics of MPA. The aim of this study was to explain MPA pharmacokinetics in UGT1A9 1399 C > T polymorphisms in Turkish renal transplant patients. Patients and methods: One hundred and twenty-five living-donor transplant recipients and 100 healthy control subjects underwent UGT1A9 1399 C > T genotyping using polymerase chain reaction–restriction fragment length polymorphism. Concentrations of MPA were determined with Cloned Enzyme Donor Immunoassay (CEDIA). Besides that, all the patients were monitored for acute rejection and graft function during the study period. Results: The UGT1A9 1399 C > T CC, CT, and TT genotype frequencies among patients were, respectively, 68.0%, 23.2%, and 8.8%. The CC, CT, and TT genotype frequencies among controls were, respectively, 63.0%, 23.0%, and 14.0%. There was no significant difference between patients and controls (p = .480, p = .999, p = .286, respectively). At first month, respectively, through blood concentrations of MPA were significantly higher in UGT1A9 1399 C > T TT carriers than in CT and CC carriers (p = .046). The doses for these patients were lower at first month (p = .021). Acute rejection episodes were not associated with the CC vs CT or TT genotypes (p = .064). Conclusions: Our results demonstrated a correlation between the UGT1A9 1399 C > T polymorphism and MPA pharmacokinetics among renal transplant patients. Determination of UGT1A9 polymorphism may help to achieve target of MPA blood concentrations.
Collapse
Affiliation(s)
- H S Ciftci
- a Department of Medical Biology, Istanbul Faculty of Medicine , Istanbul University , Istanbul , Turkey
| | - E Demir
- b Department of Nephrology , Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| | - M S Karadeniz
- c Department of Anesthesia , Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| | - T Tefik
- d Department of Urology , Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| | - I Nane
- d Department of Urology , Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| | - F S Oguz
- a Department of Medical Biology, Istanbul Faculty of Medicine , Istanbul University , Istanbul , Turkey
| | - F Aydin
- e Department of Medical Biology and Genetics , Faculty of Medicine, Istanbul Bilim University , Istanbul , Turkey
| | - A Turkmen
- b Department of Nephrology , Istanbul Faculty of Medicine, Istanbul University , Istanbul , Turkey
| |
Collapse
|
5
|
Yap DYH, Tam CH, Yung S, Wong S, Tang CSO, Mok TMY, Yuen CKY, Ma MKM, Lau CS, Chan TM. Pharmacokinetics and pharmacogenomics of mycophenolic acid and its clinical correlations in maintenance immunosuppression for lupus nephritis. Nephrol Dial Transplant 2018; 35:810-818. [DOI: 10.1093/ndt/gfy284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/18/2018] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
There is little data on mycophenolic acid (MPA) pharmacokinetics and pharmacogenomics and optimal MPA exposure in lupus nephritis (LN) patients during long-term maintenance.
Methods
We measured blood MPA levels at 1, 2, 4, 8, 10 and 12-h post-dose (i.e. C1, C2, C4, C8, C10 and C12) in 88 stable LN patients receiving maintenance prednisolone and mycophenolate mofetil, repeated every 6 months. The relationship between MPA exposure and single nucleotide polymorphisms (SNPs) of adenosine triphosphate–binding cassette subfamily C member 2 (ABCC2; rs2273697, rs3740066, rs717620 and rs17222723), organic anion-transporting polypeptides (OATPs; rs7311358 and rs4149117) and uridine diphosphate glucuronosyltransferase (UGT; rs17863762, rs6714486, rs17868320 and rs72551330) was also investigated.
Results
C1, C2 and C12 were 8.3 ± 6.6 , 7.2 ± 5.2 and 2.0 ± 1.4 mg/L and all correlated with the 12-h area under the curve (AUC0–12; r = 0.51, 0.85 and 0.73; P = 0.02, <0.001 and <0.001, respectively). C12 inversely correlated with hemoglobin, immunoglobulins and leukocyte levels (P < 0.05 for all). Five renal flares, 11 episodes of infection and 10 episodes of anemia (hemoglobin <10 g/dL) occurred over 96 weeks, with a corresponding C12 of 1.3 ± 0.5, 4.3 ± 2.6 and 2.9 ± 1.5 mg/L, respectively (versus 2.4 ± 1.2, 1.8 ± 1.2 and 1.7 ± 1.1 mg/L in patients without these complications; P = 0.041, <0.001 and 0.004). SNP rs2273697 A/G in the ABCC2 gene was associated with lower MPA exposure compared with G/G (1075.9 ± 239.9 versus 1891.5 ± 918.9 mgh/L per g/kg; P = 0.003). SNPs of OATP and UGT were unrelated to MPA level.
Conclusion
MPA C12 correlates with the AUC0–12 and is related to renal flare, infection and anemia. SNP rs2273697 A/G is associated with lower MPA exposure.
Collapse
Affiliation(s)
- Desmond Y H Yap
- Division of Nephrology, Department of Medicine, University of Hong Kong, Hong Kong
| | - Chun Hay Tam
- Nephrology Division, Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong
| | - Susan Yung
- Division of Nephrology, Department of Medicine, University of Hong Kong, Hong Kong
| | - Sunny Wong
- Nephrology Division, Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong
| | - Colin S O Tang
- Division of Nephrology, Department of Medicine, University of Hong Kong, Hong Kong
| | - Temy M Y Mok
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Hong Kong, Hong Kong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Catherine K Y Yuen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Hong Kong, Hong Kong
| | - Maggie K M Ma
- Division of Nephrology, Department of Medicine, University of Hong Kong, Hong Kong
| | - Chak Sing Lau
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Hong Kong, Hong Kong
| | - Tak Mao Chan
- Division of Nephrology, Department of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|