1
|
Shi Y, Xu L, Tao M, Fang L, Lu J, Gu H, Ma S, Lin T, Wang Y, Bao W, Qiu A, Zhuang S, Liu N. Blockade of enhancer of zeste homolog 2 alleviates renal injury associated with hyperuricemia. Am J Physiol Renal Physiol 2018; 316:F488-F505. [PMID: 30566000 DOI: 10.1152/ajprenal.00234.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperuricemia has been identified as an independent risk factor for chronic kidney disease (CKD) and is associated with the progression of kidney diseases. It remains unknown whether enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 methyltransferase, can regulate metabolism of serum uric acid and progression of renal injury induced by hyperuricemia. In this study, we demonstrated that blockade of EZH2 with 3-DZNeP, a selective EZH2 inhibitor, or silencing of EZH2 with siRNA inhibited uric acid-induced renal fibroblast activation and phosphorylation of Smad3, epidermal growth factor receptor (EGFR), and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in cultured renal fibroblasts. Inhibition of EZH2 also suppressed proliferation of renal fibroblasts and epithelial-mesenchymal transition of tubular cells. In a mouse model of renal injury induced by hyperuricemia, EZH2 and trimethylation of histone H3 at lysine27 expression levels were enhanced, which was coincident with renal damage and increased expression of lipocalin-2 and cleaved caspase-3. Inhibition of EZH2 with 3-DZNeP blocked all these responses. Furthermore, 3-DZNeP treatment decreased the level of serum uric acid and xanthine oxidase activity, alleviated renal interstitial fibrosis, inhibited activation of transforming growth factor-β/Smad3, EGFR/ERK1/2, and nuclear factor-κB signaling pathways, as well as reduced expression of multiple chemokines/cytokines. Collectively, EZH2 inhibition can reduce the level of serum uric acid and alleviate renal injury and fibrosis through a mechanism associated with inhibition of multiple signaling pathways. Targeting EZH2 may be a novel strategy for the treatment of hyperuricemia-induced CKD.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Liuqing Xu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Lu Fang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Jiasun Lu
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Hongwei Gu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Shuchen Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Tao Lin
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Wenfang Bao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University , Shanghai , China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University , Providence, Rhode Island
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| |
Collapse
|
2
|
Eleftheriadis T, Pissas G, Sounidaki M, Antoniadi G, Antoniadis N, Liakopoulos V, Stefanidis I. Uric acid increases cellular and humoral alloimmunity in primary human peripheral blood mononuclear cells. Nephrology (Carlton) 2018; 23:610-615. [PMID: 28477373 DOI: 10.1111/nep.13069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/10/2017] [Accepted: 04/30/2017] [Indexed: 12/19/2022]
Affiliation(s)
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine; University of Thessaly; Larissa Greece
| | - Maria Sounidaki
- Department of Nephrology, Faculty of Medicine; University of Thessaly; Larissa Greece
| | - Georgia Antoniadi
- Department of Nephrology, Faculty of Medicine; University of Thessaly; Larissa Greece
| | - Nikolaos Antoniadis
- Organ Transplant Unit, Hippokration General Hospital; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Vassilios Liakopoulos
- Department of Nephrology, Faculty of Medicine; University of Thessaly; Larissa Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine; University of Thessaly; Larissa Greece
| |
Collapse
|
3
|
Sosa Peña MDP, Lopez-Soler R, Melendez JA. Senescence in chronic allograft nephropathy. Am J Physiol Renal Physiol 2016; 315:F880-F889. [PMID: 27306980 DOI: 10.1152/ajprenal.00195.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite increasing numbers of patients on dialysis, the numbers of renal transplants performed yearly have remained relatively static. During the last 50 years, there have been many advances in the pharmacology of prevention of organ rejection. However, most patients will suffer from a slow but steady decline in renal function leading to graft loss. The most common cause of long-term graft loss is chronic allograft nephropathy (CAN). Therefore, elucidating and understanding the mechanisms involved in CAN is crucial for achieving better posttransplant outcomes. It is thought that the development of epithelial to mesenchymal transition (EMT) in proximal tubules is one of the first steps towards CAN, and has been shown to be a result of cellular senescence. Cells undergoing senescence acquire a senescence associated secretory phenotype (SASP) leading to the production of interleukin-1 alpha (IL-1α), which has been implicated in several degenerative and inflammatory processes including renal disease. A central mediator in SASP activation is the production of reactive oxygen species (ROS), which are produced in response to numerous physiological and pathological stimuli. This review explores the connection between SASP and the development of EMT/CAN in an effort to suggest future directions for research leading to improved long-term graft outcomes.
Collapse
Affiliation(s)
| | - Reynold Lopez-Soler
- Albany Medical Center, Department of Surgery, Division of Transplantation, Albany, New York
| | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, New York
| |
Collapse
|