1
|
Ajmal N, Bogart MC, Khan P, Max-Harry IM, Healy AM, Nunemaker CS. Identifying Promising Immunomodulators for Type 1 Diabetes (T1D) and Islet Transplantation. J Diabetes Res 2024; 2024:5151171. [PMID: 39735417 PMCID: PMC11679277 DOI: 10.1155/jdr/5151171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune chronic disorder that damages beta cells in the pancreatic islets of Langerhans and results in hyperglycemia due to the loss of insulin. Exogenous insulin therapy can save lives but does not stop disease progression. Thus, an effective therapy may require beta cell restoration and suppression of the autoimmune response. However, currently, there are no treatment options available that can reverse T1D. Within the National Clinical Trial (NCT) database, a majority of over 3000 trials to treat T1D are devoted to insulin therapy. This review focuses on noninsulin pharmacological therapies, specifically immunomodulators. Many investigational new drugs fall under this category, such as the recently FDA-approved CD3 monoclonal antibody teplizumab to delay the onset of T1D. In total, we identified 39 different immunomodulatory investigational drugs. FDA-approved teplizumab for Stage 2 T1D is discussed along with other immunomodulators that have been tested in Phase 3 clinical trials or higher, including otelixizumab (another anti-CD3 monoclonal antibody), daclizumab (an anti-CD25 monoclonal antibody), ladarixin (CXCR1/2 inhibitor), and antithymocyte globulin (ATG). Immunomodulators also play roles in islet transplantation and cellular therapies like FDA-approved Lantidra. Several immunomodulators involved in Phase 3 clinical studies of islet transplantation are also discussed, including alemtuzumab, basiliximab, etanercept, and reparixin, some already FDA-approved for other uses. These include alemtuzumab, basiliximab, etanercept, and reparixin, some of which have been FDA-approved for other uses. This review provides background, mechanism of action, results of completed trials, and adverse effects as well as details regarding ongoing clinical trials for each of these immunomodulators. Trial Registration: ClinicalTrials.gov identifier: NCT03875729, NCT01030861, NCT00129259, NCT00385697, NCT01280682; NCT03929601, NCT04598893, NCT05757713, NCT00678886, NCT01123083, NCT00064714, NCT00468117, NCT04628481, NCT01106157, NCT02215200, NCT00331162, NCT00679042, NCT01220856, NCT01817959.
Collapse
Affiliation(s)
- Nida Ajmal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, Ohio, USA
| | | | - Palwasha Khan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, Ohio, USA
| | - Ibiagbani M. Max-Harry
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Molecular and Cellular Biology Graduate Program, Ohio University, Athens, Ohio, USA
| | - Amber M. Healy
- Department of Specialty Medicine, Ohio University, Athens, Ohio, USA
| | - Craig S. Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
- Translational Biomedical Sciences Graduate Program, Ohio University, Athens, Ohio, USA
- Molecular and Cellular Biology Graduate Program, Ohio University, Athens, Ohio, USA
| |
Collapse
|
2
|
Loka RS, Song Z, Sletten ET, Kayal Y, Vlodavsky I, Zhang K, Nguyen HM. Heparan Sulfate Mimicking Glycopolymer Prevents Pancreatic β Cell Destruction and Suppresses Inflammatory Cytokine Expression in Islets under the Challenge of Upregulated Heparanase. ACS Chem Biol 2022; 17:1387-1400. [PMID: 35658404 PMCID: PMC9251817 DOI: 10.1021/acschembio.1c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diabetes is a chronic disease in which the levels of blood glucose are too high because the body does not effectively produce insulin to meet its needs or is resistant to insulin. β Cells in human pancreatic islets produce insulin, which signals glucogen production by the liver and causes muscles and fat to uptake glucose. Progressive loss of insulin-producing β cells is the main cause of both type 1 and type 2 diabetes. Heparan sulfate (HS) is a ubiquitous polysaccharide found at the cell surface and in the extracellular matrix (ECM) of a variety of tissues. HS binds to and assembles proteins in ECM, thus playing important roles in the integrity of ECM (particularly basement membrane), barrier function, and ECM-cell interactions. Islet HS is highly expressed by the pancreatic β cells and critical for the survival of β cells. Heparanase is an endoglycosidase and cleaves islet HS in the pancreas, resulting in β-cell death and oxidative stress. Heparanase could also accelerate β-cell death by promoting cytokine release from ECM and secretion by activated inflammatory and endothelial cells. We demonstrate that HS-mimicking glycopolymer, a potent heparanase inhibitor, improves the survival of cultured mouse pancreatic β cells and protects HS contents under the challenge of heparanase in human pancreatic islets. Moreover, this HS-mimicking glycopolymer reduces the expression levels of cytokines (IL8, IL1β, and TNFα) and the gene encoding Toll-like Receptor 2 (TLR2) in human pancreatic islets.
Collapse
Affiliation(s)
- Ravi S Loka
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Eric T Sletten
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Yasmin Kayal
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|