1
|
Autsavapromporn N, Duangya A, Klunklin P, Chitapanarux I, Kranrod C, Jaikang C, Monum T, Paemanee A, Tokonami S. Serum biomarkers associated with health impacts of high residential radon exposure: a metabolomic pilot study. Sci Rep 2025; 15:5099. [PMID: 39934345 PMCID: PMC11814192 DOI: 10.1038/s41598-025-89753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
Long-term epidemiological evidence suggests that populations exposed to high natural radiation levels for extended periods may have an increased risk of cancer and other diseases. However, research on health effects in high-radon areas, particularly regarding disease-related biomarkers, remains limited. This study aimed to investigate serum metabolic biomarkers associated with diseases in individuals from areas with high radon exposure. Metabolic profiling was performed using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry on 30 healthy participants comprising 15 individuals from a low-residential radon exposure group and 15 from a high-residential radon exposure group. Multivariate analysis, receiver operating characteristic (ROC) curve analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied. Partial least-squares discriminant analysis revealed significant differences (P < 0.05) between the two groups, identifying 92 metabolites. ROC analysis (AUC ≥ 0.85) highlighted 12 key candidates associated with high radon exposure. KEGG pathway analysis linked D-sphingosine to lung cancer development and 3-methylhistidine to kidney disease, early preeclampsia, and Alzheimer's disease. These findings suggest that D-sphingosine and 3-methylhistidine are promising serum biomarkers for identifying high-risk individuals with prolonged radon exposure and contribute to the identification of novel biomarkers in future studies on high-radon exposure areas.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Aphidet Duangya
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pitchayaponne Klunklin
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Imjai Chitapanarux
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chutima Kranrod
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Aomori, Japan
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tawachai Monum
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Atchara Paemanee
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Shinji Tokonami
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Aomori, Japan
| |
Collapse
|
2
|
Fan D, Zhang Y, Lu L, Yin F, Liu B. Uncovering the potential molecular mechanism of liraglutide to alleviate the effects of high glucose on myoblasts based on high-throughput transcriptome sequencing technique. BMC Genomics 2024; 25:159. [PMID: 38331723 PMCID: PMC10851481 DOI: 10.1186/s12864-024-10076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Myoblasts play an important role in muscle growth and repair, but the high glucose environment severely affects their function. The purpose of this study is to explore the potential molecular mechanism of liraglutide in alleviating the effects of high glucose environments on myoblasts. METHODS MTT, western blot, and ELISA methods were used to investigate the role of liraglutide on C2C12 myoblasts induced by high glucose. The high-throughput transcriptome sequencing technique was used to sequence C2C12 myoblasts from different treated groups. The DESeq2 package was used to identify differentially expressed-mRNAs (DE-mRNAs). Then, functional annotations and alternative splicing (AS) were performed. The Cytoscape-CytoHubba plug-in was used to identify multicentric DE-mRNAs. RESULTS The MTT assay results showed that liraglutide can alleviate the decrease of myoblasts viability caused by high glucose. Western blot and ELISA tests showed that liraglutide can promote the expression of AMPKα and inhibit the expression of MAFbx, MuRF1 and 3-MH in myoblasts. A total of 15 multicentric DE-mRNAs were identified based on the Cytoscape-CytoHubba plug-in. Among them, Top2a had A3SS type AS. Functional annotation identifies multiple signaling pathways such as metabolic pathways, cytokine-cytokine receptor interaction, cAMP signaling pathway and cell cycle. CONCLUSION Liraglutide can alleviate the decrease of cell viability and degradation of muscle protein caused by high glucose, and improves cell metabolism and mitochondrial activity. The molecular mechanism of liraglutide to alleviate the effect of high glucose on myoblasts is complex. This study provides a theoretical basis for the clinical effectiveness of liraglutide in the treatment of skeletal muscle lesions in diabetes.
Collapse
Affiliation(s)
- Dongmei Fan
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China
| | - Yunjie Zhang
- Department of Nursing, The First Hospital of QinHuangdao, Qinhuangdao City, 066000, Hebei Province, China
| | - Lanyu Lu
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China
| | - Fuzai Yin
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China
| | - Bowei Liu
- Department of Endocrinology, The First Hospital of QinHuangdao, 258 Wenhua Road, Haigang District, Qinhuangdao City, 066000, Hebei Province, China.
| |
Collapse
|
4
|
Chang YC, Wang CH, Lai YH, Lin YL, Kuo CH, Hsu BG, Tsai JP. Low serum 3-methyl histidine level is associated with aortic stiffness in maintenance hemodialysis patients. Ther Apher Dial 2021; 26:726-733. [PMID: 34748283 DOI: 10.1111/1744-9987.13754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/13/2021] [Accepted: 10/31/2021] [Indexed: 01/20/2023]
Abstract
3-Methylhistidine (3MH) is an indicator of muscle catabolism. Subclinical protein malnutrition is an independent predictor of aortic stiffness (AS). We aimed to study the relationship between serum 3MH level and AS among patients undergoing maintenance hemodialysis (MHD). Carotid-femoral pulse wave velocity was applied to measure AS of 110 MHD patients. Serum 3MH levels were analyzed using high-performance liquid chromatography and mass spectrometry. AS was defined as cfPWV >10 m/s. Forty-five (40.9%) patients were categorized as having AS. Multivariable logistic (odds ratio: 0.792, p < 0.001) and linear (β = -0.322, p < 0.001) regression analysis revealed that serum 3MH is an independent factor associated with AS among MHD patients. The diagnostic power of 3MH for AS in patients undergoing MHD was 0.691 (95% CI: 0.595-0.775, p = 0.0002). Low serum 3MH levels could be a potential biomarker related to AS among MHD patients.
Collapse
Affiliation(s)
- Yu-Chi Chang
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Hsien Wang
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Hsien Lai
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Li Lin
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chiu-Huang Kuo
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Post-baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Bang-Gee Hsu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| |
Collapse
|