1
|
Zheng M, Li FH, Liu J, Li WJ, Yin RX, Cai DT, Andrey DO, Zheng SL, Gales AC, Zhang WJ, Sun J, Liao XP, Yu Y. Synergistic effects of ceftazidime/avibactam combined with meropenem in a murine model of infection with KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother 2024; 79:1069-1080. [PMID: 38526879 DOI: 10.1093/jac/dkae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVES The emergence and expansion of carbapenem-resistant Klebsiella pneumoniae infections is a concern due to the lack of 'first-line' antibiotic treatment options. The ceftazidime/avibactam is an important clinical treatment for carbapenem-resistant K. pneumoniae infections but there is an increasing number of cases of treatment failure and drug resistance. Therefore, a potential solution is combination therapies that result in synergistic activity against K. pneumoniae carbapenemase: producing K. pneumoniae (KPC-Kp) isolates and preventing the emergence of KPC mutants resistant to ceftazidime/avibactam are needed in lieu of novel antibiotics. METHODS To evaluate their synergistic activity, antibiotic combinations were tested against 26 KPC-Kp strains. Antibiotic resistance profiles, molecular characteristics and virulence genes were investigated by susceptibility testing and whole-genome sequencing. Antibiotic synergy was evaluated by in vitro chequerboard experiments, time-killing curves and dose-response assays. The mouse thigh model was used to confirm antibiotic combination activities in vivo. Additionally, antibiotic combinations were evaluated for their ability to prevent the emergence of ceftazidime/avibactam resistant mutations of blaKPC. RESULTS The combination of ceftazidime/avibactam plus meropenem showed remarkable synergistic activity against 26 strains and restored susceptibility to both the partnering antibiotics. The significant therapeutic effect of ceftazidime/avibactam combined with meropenem was also confirmed in the mouse model and bacterial loads in the thigh muscle of the combination groups were significantly reduced. Furthermore, ceftazidime/avibactam plus meropenem showed significant activity in preventing the occurrence of resistance mutations. CONCLUSIONS Our results indicated that the combination of ceftazidime/avibactam plus meropenem offers viable therapeutic alternatives in treating serious infections due to KPC-Kp.
Collapse
Affiliation(s)
- Mei Zheng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fu-Hao Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Juan Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen-Jie Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ruo-Xi Yin
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Da-Tong Cai
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Diego O Andrey
- Service of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, 1211, Switzerland
| | - Si-Lin Zheng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ana C Gales
- Infectious Diseases Division, Federal University of Sao Paulo-UNIFESP, Escola Paulista de Medicina, São Paulo, Brazil
| | - Wan-Jiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yang Yu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Pan J, Ye C, Zhou LZ, Li ZY, Wang J, He X, Chen SJ, Zhou GQ. The Spectrum of Tigecycline-Induced Pancreatitis in Clinical Characteristics, Diagnosis, and Management. Int J Gen Med 2023; 16:2971-2979. [PMID: 37465554 PMCID: PMC10350411 DOI: 10.2147/ijgm.s410542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Introduction Tigecycline-induced acute pancreatitis (AP) has been frequently increasingly reported in solid organ transplant patients. This review aimed to summarize the characteristics, possible mechanisms, and management of tigecycline-induced AP. Methods Case reports of tigecycline-induced AP published in Chinese or English were collected until February 2023 for retrospective analysis. Results Thirty-four patients from 29 articles were included. Fifteen patients (46.9%) had solid organ transplantation, and 4 patients (12.5%) had malignant tumors. Twenty-five patients (89.3%) received a recommended maintenance dose of tigecycline (50 mg q12 h). The median age was 50 years (range 9-87). Compared to the nontransplant patients, the median age of the transplant patients was significantly younger, 44 years (range 12.5-61) versus 57.5 years (range 9-87) (P=0.03). The median time of symptom onset was 7 days (range 2-29), and 91.2% (31/34) were less than 14 days. Typical initial symptoms included abdominal pain (90.6%), nausea (46.9%), vomiting (43.8%), and abdominal distention (21.9%). Most cases were accompanied by elevated levels of pancreatic enzymes. The main radiological features included edematous infiltrate and acute pancreatitis on computed tomography (CT) scan and abdominal ultrasound. Except for one patient who continued tigecycline treatment, all patients discontinued treatment and received symptomatic support such as fasting, acid suppression, and enzyme suppression. The median time to recover pancreatic enzymes to the normal range was 5 days (range 1-43), and the median time to relieve symptoms was 4 days (range 1-12). Four patients died, of whom two died of severe pancreatitis complications and two of cardiogenic shock and septicemia. Conclusion Tigecycline-induced AP was a rare and serious complication that occurred mainly within two weeks of the medication. This serious side effect should be kept in mind while treating severe infections especially in transplant recipients.
Collapse
Affiliation(s)
- Juan Pan
- Department of Pharmacy, Liuyang Hospital of Traditional Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Chao Ye
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, People’s Republic of China
| | - Ling-Zhi Zhou
- Department of Pharmacy, Liuyang Hospital of Traditional Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Zu-Yi Li
- Department of Pharmacy, Liuyang Hospital of Traditional Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Juan Wang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, People’s Republic of China
| | - Xin He
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, People’s Republic of China
| | - Shen-Jue Chen
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, People’s Republic of China
| | - Guang-Qing Zhou
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
3
|
Pérez-Nadales E, Fernández-Ruiz M, Gutiérrez-Gutiérrez B, Pascual Á, Rodríguez-Baño J, Martínez-Martínez L, Aguado JM, Torre-Cisneros J. Extended-spectrum β-lactamase-producing and carbapenem-resistant Enterobacterales bloodstream infection after solid organ transplantation: Recent trends in epidemiology and therapeutic approaches. Transpl Infect Dis 2022; 24:e13881. [PMID: 35691028 PMCID: PMC9540422 DOI: 10.1111/tid.13881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
Background Infections caused by multidrug‐resistant gram‐negative bacilli (MDR GNB), in particular extended‐spectrum β‐lactamase‐producing (ESBL‐E) and carbapenem‐resistant Enterobacterales (CRE), pose a major threat in solid organ transplantation (SOT). Outcome prediction and therapy are challenging due to the scarcity of randomized clinical trials (RCTs) or well‐designed observational studies focused on this population. Methods Narrative review with a focus on the contributions provided by the ongoing multinational INCREMENT‐SOT consortium (ClinicalTrials identifier NCT02852902) in the fields of epidemiology and clinical management. Results The Spanish Society of Transplantation (SET), the Group for Study of Infection in Transplantation of the Spanish Society of Infectious Diseases and Clinical Microbiology (GESITRA‐SEIMC), and the Spanish Network for Research in Infectious Diseases (REIPI) recently published their recommendations for the management of MDR GNB infections in SOT recipients. We revisit the SET/GESITRA‐SEIMC/REIPI document taking into consideration new evidence that emerged on the molecular epidemiology, prognostic stratification, and treatment of post‐transplant ESBL‐E and CRE infections. Results derived from the INCREMENT‐SOT consortium may support the therapeutic approach to post‐transplant bloodstream infection (BSI). The initiatives devoted to sparing the use of carbapenems in low‐risk ESBL‐E BSI or to repurposing existing non‐β‐lactam antibiotics for CRE in both non‐transplant and transplant patients are reviewed, as well as the eventual positioning in the specific SOT setting of recently approved antibiotics. Conclusion Due to the clinical complexity and relative rarity of ESBL‐E and CRE infections in SOT recipients, multinational cooperative efforts such as the INCREMENT‐SOT Project should be encouraged. In addition, RCTs focused on post‐transplant serious infection remain urgently needed.
Collapse
Affiliation(s)
- Elena Pérez-Nadales
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Department of Agricultural Chemistry, Edaphology and Microbiology, and Department of Medicine, University of Cordoba, Cordoba, Spain
| | - Mario Fernández-Ruiz
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Unit of Infectious Diseases, "12 de Octubre" University Hospital, Instituto de Investigación Hospital "12 de Octubre" (imas12), Universidad Complutense, Madrid, Spain
| | - Belén Gutiérrez-Gutiérrez
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Departments of Microbiology and Medicine, Clinical Unit of Infectious Diseases and Microbiology, Virgen Macarena University Hospital, Institute of Biomedicine of Seville (IBIS), CSIC, University of Seville, Seville, Spain
| | - Álvaro Pascual
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Departments of Microbiology and Medicine, Clinical Unit of Infectious Diseases and Microbiology, Virgen Macarena University Hospital, Institute of Biomedicine of Seville (IBIS), CSIC, University of Seville, Seville, Spain
| | - Jesús Rodríguez-Baño
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Departments of Microbiology and Medicine, Clinical Unit of Infectious Diseases and Microbiology, Virgen Macarena University Hospital, Institute of Biomedicine of Seville (IBIS), CSIC, University of Seville, Seville, Spain
| | - Luis Martínez-Martínez
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Department of Agricultural Chemistry, Edaphology and Microbiology, and Department of Medicine, University of Cordoba, Cordoba, Spain
| | - José María Aguado
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Unit of Infectious Diseases, "12 de Octubre" University Hospital, Instituto de Investigación Hospital "12 de Octubre" (imas12), Universidad Complutense, Madrid, Spain
| | - Julian Torre-Cisneros
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Department of Agricultural Chemistry, Edaphology and Microbiology, and Department of Medicine, University of Cordoba, Cordoba, Spain
| |
Collapse
|
4
|
Assessment of Ceftazidime-Avibactam 30/20-μg Disk, Etest versus Broth Microdilution Results When Tested against Enterobacterales Clinical Isolates. Microbiol Spectr 2022; 10:e0109221. [PMID: 35019685 PMCID: PMC8865541 DOI: 10.1128/spectrum.01092-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this research was to evaluate the correlation between inhibitory zones and MIC when testing ceftazidime-avibactam using disk diffusion, Etest, and broth microdilution method established by the Clinical and Laboratory Standards Institute (CLSI). Four-hundred and 58 isolates of Enterobacterales isolated from 54 medical centers from the China Antimicrobial Surveillance Network (CHINET) in 2016 to 2020 were collected. Antimicrobial susceptibility testing using broth microdilution, Etest, and disk diffusion were performed according to the CLSI. Of the 458 Enterobacterales, 17.2% (79/458) and 82.8%(379/458) were resistant or susceptible to ceftazidime-avibactam by broth microdilution, respectively. Compared with the broth microdilution method, the categorical agreement (CA) and essential agreement (EA) of the Etest were 99.6% (456/458) and 94.8% (434/458), respectively; the major error (ME) and very major error (VME) were both 0.2% (1/458). For disk diffusion, the CA and VME were 99.8% (457/458) and 0.2% (1/458), respectively. For Escherichia coli, the CA and EA of the Etest were 100% and 97.1% (135/139), respectively. The CA of the disk diffusion was 100%. For Klebsiella pneumoniae, the CA and EA of the Etest were 99.3% (288/290) and 93.4% (271/290), respectively, the ME and VME were both 0.3% (1/290). The CA and VME of disk diffusion were 99.7% (289/290) and 0.3% (1/290), respectively. For other Enterobacterales, the CA and EA of the Etest were 100% and 96.6% (28/29), respectively. The CA of the disk diffusion was 100%. Ceftazidime-avibactam disk diffusion (30/20-μg disks) and Etest demonstrated good performance for ceftazidime-avibactam susceptibility testing against Enterobacterales clinical isolates. IMPORTANCE Multidrug-resistant Gram-negative bacteria, especially for extended-spectrum β-lactamases-producing and carbapenemase-producing Enterobacterales, are disseminating rapidly around the world. Treatment options for these infections are limited, which prompt the development of novel or combinational therapies to combat the infections caused by multidrug-resistant pathogens. The newly available β-lactam combination agent ceftazidime-avibactam has been demonstrated good in vitro and in vivo activity against ESBL, AmpC, KPC-2, or OXA-48-like-producing isolates and has shown promise in treating carbapenem-resistant Enterobacterales infections. Concerningly, there are few available automated systems for ceftazidime-avibactam susceptibility testing, and the broth microdilution method is hard to perform in most routine laboratories. Therefore, we urgently need an economical and practical method for the accurate detection of ceftazidime-avibactam activity against Gram-negative bacilli. Here, we evaluate the performance of the disk diffusion and Etest compared with the reference broth microdilution method against Enterobacterales clinical strains.
Collapse
|
5
|
Fang J, Li H, Zhang M, Shi G, Liu M, Wang Y, Bian X. Efficacy of Ceftazidime-Avibactam Versus Polymyxin B and Risk Factors Affecting Clinical Outcomes in Patients With Carbapenem-Resistant Klebsiella pneumoniae Infections a Retrospective Study. Front Pharmacol 2021; 12:780940. [PMID: 34955849 PMCID: PMC8703033 DOI: 10.3389/fphar.2021.780940] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/03/2021] [Indexed: 01/16/2023] Open
Abstract
Background: The worldwide outbreak of carbapenem-resistant Klebsiella pneumoniae (CRKP) has become an urgent public health problem. High mortality and lack of effective treatments further pose new challenges to control this infection. However, studies about the evaluation of available antibiotics for CRKP infection are limited. The present study aimed to compare the efficacy of polymyxin B versus ceftazidime-avibactam (CAZ/AVI) in Chinese patients with CRKP infections and to identify risk factors affecting 7-day bacterial eradication and 28-day all-cause mortality. Methods: From January 8, 2018, to July 6, 2020, a total of 115 adult CRKP infected patients from two tertiary teaching hospitals in Shanghai, China were enrolled based on the inclusion and exclusion criteria. By reviewing electronic medical records of these patients, demographic and clinical data were extracted. The selected patients were divided into polymyxin B and CAZ/AVI groups according to primary antibiotic exposure to compare therapeutic effects. Binary logistic and cox's regression analysis were performed to identify risk factors for 7-day bacterial eradication and all-cause mortality. Results: One hundred and five patients were treated with polymyxin B (67.8%) or CAZ/AVI (32.2%). Patients in the CAZ/AVI group had significantly lower rates of 28-day mortality (8.1 vs 29.5%, p = 0.013), higher microbiological eradication and 28-day clinical success. Multivariate analysis showed that Charlson comorbidity index (≥3) and prior antibiotic use within 90 days were independent risk factors for poor microbiological eradication. Cox's regression analysis indicated that the length of hospitalization after CRKP infection and baseline creatinine clearance negatively affected 28-day mortality. Conclusion: CAZ/AVI was more effective than polymyxin B and appeared to be a promising drug for CRKP infection, especially for critically ill patients.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hui Li
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Min Zhang
- Department of Pharmacy Services, Boston Medical Center, Boston, MA, United States
| | - Guochao Shi
- Department of Respiration and Critical Care Disease, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Mengying Liu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yujie Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolan Bian
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
6
|
Soriano A, Carmeli Y, Omrani AS, Moore LSP, Tawadrous M, Irani P. Ceftazidime-Avibactam for the Treatment of Serious Gram-Negative Infections with Limited Treatment Options: A Systematic Literature Review. Infect Dis Ther 2021; 10:1989-2034. [PMID: 34379310 PMCID: PMC8355581 DOI: 10.1007/s40121-021-00507-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION A systematic literature review was undertaken to evaluate real-world use of ceftazidime-avibactam for infections due to aerobic Gram-negative organisms in adults with limited treatment options. METHODS Literature searches retrieved peer-reviewed publications and abstracts from major international infectious disease congresses from January 2015 to February 2021. Results were screened using pre-defined criteria to limit the dataset to relevant publications (notable exclusions were paediatric data and outcomes data for bacteria intrinsically resistant to ceftazidime-avibactam). Data for included publications were subjected to qualitative synthesis. RESULTS Seventy-three relevant publications (62 peer-reviewed articles; 10 abstracts) comprising 1926 patients treated with ceftazidime-avibactam (either alone or combined with other antimicrobials) and 1114 comparator/control patients were identified. All patients were hospitalised for serious illness and most had multiple comorbidities. The most common infections were pneumonia, bacteraemia, and skin/soft tissue, urinary tract, or abdominal infections; smaller numbers of patients with meningitis, febrile neutropenia, osteomyelitis, and cystic fibrosis were also included. Carbapenem-resistant or carbapenemase-producing Enterobacterales (CRE; n = 1718) and carbapenem-resistant, multidrug-resistant (MDR), and extensively drug-resistant Pseudomonas aeruginosa (n = 150) were the most common pathogens. Most publications reported positive outcomes for ceftazidime-avibactam treatment (clinical success rates ranged from 45 to 100% and reported 30-day mortality from 0 to 63%), which were statistically superior versus comparators in some studies. ceftazidime-avibactam resistance emergence occurred infrequently and mostly in Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains. CONCLUSION This review provides qualitative evidence of successful use of ceftazidime-avibactam for the treatment of hospitalised patients with CRE and MDR P. aeruginosa infections with limited treatment options.
Collapse
Affiliation(s)
- Alex Soriano
- Division of Infectious Diseases, Hospital Clínic de Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain.
- Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
| | - Yehuda Carmeli
- Division of Epidemiology, The National Center for Antibiotic Resistance and Infection Control, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ali S Omrani
- Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Luke S P Moore
- Chelsea & Westminster NHS Foundation Trust, London, UK
- Imperial College Healthcare NHS Trust, London, UK
- Imperial College London, London, UK
| | | | - Paurus Irani
- Global Medical Affairs, Anti-infectives, Pfizer, Tadworth, Surrey, UK
| |
Collapse
|