1
|
Ciftel S, Mercantepe T, Aktepe R, Pinarbas E, Ozden Z, Yilmaz A, Mercantepe F. Protective Effects of Trimetazidine and Dexmedetomidine on Liver Injury in a Mesenteric Artery Ischemia-Reperfusion Rat Model via Endoplasmic Reticulum Stress. Biomedicines 2024; 12:2299. [PMID: 39457612 PMCID: PMC11504293 DOI: 10.3390/biomedicines12102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Acute mesenteric ischemia can lead to severe liver damage due to ischemia-reperfusion (I/R) injury. This study investigated the protective effects of trimetazidine (TMZ) and dexmedetomidine (DEX) against liver damage induced by mesenteric artery I/R via endoplasmic reticulum stress (ERS) mechanisms. METHODS Twenty-four rats were divided into four groups: control, I/R, I/R+TMZ, and I/R+DEX. TMZ (20 mg/kg) was administered orally for seven days, and DEX (100 µg/kg) was given intraper-itoneally 30 min before I/R induction. Liver tissues were analyzed for creatinine, alanine ami-notransferase (ALT), aspartate aminotransferase (AST), thiobarbituric acid reactive substances (TBARS), and total thiol (TT) levels. RESULTS Compared with the control group, the I/R group presented significantly increased AST, ALT, TBARS, and TT levels. TMZ notably reduced creatinine levels. I/R caused significant liver necrosis, inflammation, and congestion. TMZ and DEX treatments reduced this histopathological damage, with DEX resulting in a more significant reduction in infiltrative areas and vascular congestion. The increase in the expression of caspase-3, Bax, 8-OHdG, C/EBP homologous protein (CHOP), and glucose-regulated protein 78 (GRP78) decreased with the TMZ and DEX treatments. In addition, Bcl-2 positivity decreased both in the TMZ and DEX treatments. CONCLUSIONS Both TMZ and DEX have protective effects against liver damage. These effects are likely mediated through the reduction in ERS and apoptosis, with DEX showing slightly superior protective effects compared with TMZ.
Collapse
Affiliation(s)
- Sedat Ciftel
- Department of Gastroenterology and Hepatology, Erzurum Regional Education and Research Hospital, 25070 Erzurum, Turkey;
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (T.M.); (Z.O.)
| | - Riza Aktepe
- Department of Anatomy, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Esra Pinarbas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Zulkar Ozden
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (T.M.); (Z.O.)
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism Diseases, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| |
Collapse
|
2
|
Wei R, Ping GF, Lang ZT, Wang EH. Grape seed proanthocyanins protect fluoride-induced hepatotoxicity via the Nrf2 signaling pathway in male rats. Toxicol Res (Camb) 2024; 13:tfae039. [PMID: 38500515 PMCID: PMC10944556 DOI: 10.1093/toxres/tfae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Background Fluoride is a necessary element for human health, but excessive fluoride intake is found toxic to the liver. Previous studies confirmed that Grape seed procyanidin extract (GSPE) protects against fluoride-induced hepatic injury. However, the mechanism underlying this protective effect remains obscure. To evaluate the protective effect of GSPE against fluoride-induced hepatic injury and explore the possible hepatoprotective role of the Nrf2 signaling pathway to find effective strategies for the treatment and prevention of fluoride-induced hepatotoxicity. This study aims to explore the mechanisms by which GSPE attenuates fluoride-induced hepatotoxicity through a rat drinking water poisoning model. Methods Hepatic injury was determined by serum biochemical parameters, oxidative parameters, HE, and TUNEL analysis. The protein expression levels of apoptosis-related proteins like Bax, B-cell lymphoma-2 (Bcl-2), and Caspase-3 and the nuclear factor, erythroid 2 like 2 (Nrf2) were analyzed by Western blot. Resluts Our results showed that GSPE administration reduced fluoride-induced elevated serum ALT and AST and enhanced the antioxidant capacity of the liver. In addition, GSPE mitigated fluoride-induced histopathological damage and reduced the liver cell apoptosis rate. Furthermore, GSPE significantly up-regulated the expression and nuclear translocation of the Nrf2 and decreased apoptosis-related proteins like Bax and caspase-3 in the hepatic. Conclusion Taken together, GSPE exerts protective effects on the oxidative damage and apoptosis of fluoride-induced hepatic injury via the activation of the Nrf2 signaling pathway. This study provides a new perspective for the mechanism study and scientific prevention and treatment of liver injury induced by endemic fluorosis.
Collapse
Affiliation(s)
- Ran Wei
- School of medicine, Shaoxing University, No. 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Guan Fang Ping
- Department of Pharmacy, the First Affiliated Hospital, Xinxiang Medical University, No. 88 Jiankang Road, Weihui, Henan 453100, China
| | - Zhe Tao Lang
- School of medicine, Shaoxing University, No. 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Er Hui Wang
- School of medicine, Shaoxing University, No. 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
3
|
Lee EJ, Hwang HJ, Ko JS, Park M. Effects of Extracellular Calcium Concentration on Hepatic Ischemia-Reperfusion Injury in a Rat Model. EXP CLIN TRANSPLANT 2024; 22:120-128. [PMID: 38511983 DOI: 10.6002/ect.2023.0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
OBJECTIVES Hypocalcemia is frequently identified during liver transplant. However, supplementation of extracellular calcium could induce increased intracellular calcium concentration, as a potential factor for injury to the liver graft. We evaluated the effects of regulating extracellular calcium concentrations on hepatic ischemia-reperfusion injury. MATERIALS AND METHODS We randomly divided 24 Sprague-Dawley rats into 3 groups: group C received normal saline (n = 8), group L received citrate to induce hypocalcemia (n = 8), and group L-Co received citrate followed by calcium gluconate to ameliorate hypocalcemia (n = 8). Liver enzyme levels and extracellular calcium were measured before surgery, 1 hour after ischemia, and 2 hours after reperfusion. The primary outcome was liver enzyme levels measured 2 hours after reperfusion. In addition, we evaluated intracellular calcium levels, lactate dehydrogenase activity, and histopathological results in liver tissue. RESULTS Three groups demonstrated significant differences in extracellular calcium concentrations, but intracellular calcium concentrations in liver tissue were not significantly different. Group L showed significantly lower mean arterial pressure than other groups at 1 hour after ischemia (93.6 ± 20.8 vs 69.4 ± 14.2 vs 86.6 ± 10.4 mmHg; P = .02, for group C vs L vs L-Co, respectively). At 2 hours after reperfusion, group L showed significantly higher liver enzymes than other groups (aspartate aminotransferase 443.0 ± 353.2 vs 952.3 ± 94.8 vs 502.4 ± 327.3 U/L, P = .01; and alanine aminotransferase 407.9 ± 406.5 vs 860.6 ± 210.9 vs 333.9 ± 304.2 U/L, P = .02; for group C vs L vs L-Co, respectively). However, no significant difference was shown in lactate dehydrogenase and histological liver injury grade. CONCLUSIONS Administering calcium to rats with hypocalcemia did not increase intracellular calcium accumulation but instead resulted in less hepatic injury compared with rats with low extracellular calcium concentrations in this rat model study.
Collapse
Affiliation(s)
- Eun Ji Lee
- From the Department of Anesthesiology and Pain Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
4
|
Si P, Lei J, Yang C, Zhang P, Li X, Zheng S, Li Q, Zhang J. Mesoporous Hollow Manganese Doped Ceria Nanoparticle for Effectively Prevention of Hepatic Ischemia Reperfusion Injury. Int J Nanomedicine 2023; 18:2225-2238. [PMID: 37131546 PMCID: PMC10149098 DOI: 10.2147/ijn.s400467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/04/2023] [Indexed: 05/04/2023] Open
Abstract
Introduction Hepatic ischemia-reperfusion injury (HIRI) is the main reason for liver dysfunction or failure after liver resection and liver transplantation. As excess accumulation of reactive oxygen species (ROS) is the leading factor, ceria nanoparticle, a cyclic reversible antioxidant, is an excellent candidate for HIRI. Methods Manganese doped mesoporous hollow ceria nanoparticles (MnOx-CeO2 NPs) were prepared, and the physicochemical characteristics, such as particle size, morphology, microstructure, etc. were elucidated. The in vivo safety and liver targeting effect were examined after i.v. injection. The anti-HIRI was determined by a mouse HIRI model. Results MnOx-CeO2 NPs with 0.40% Mn doped exhibited the strongest ROS-scavenging capability, which may due to the increased specific surface area and surface oxygen concentration. The nanoparticles accumulated in the liver after i.v. injection and exhibited good biocompatibility. In the HIRI mice model, MnOx-CeO2 NPs significantly reduced the serum ALT and AST level, decreased the MDA level and increased the SOD level in the liver, prevent pathological damages in the liver. Conclusion MnOx-CeO2 NPs were successfully prepared and it could significantly inhibit the HIRI after i.v. injection.
Collapse
Affiliation(s)
- Peiru Si
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jiaxing Lei
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Chen Yang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xiaojiao Li
- Biobank, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Shaohua Zheng
- Department of Anesthesiology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Correspondence: Qingqing Li; Jiye Zhang, School of Pharmacy, Health Science Center, Xi’an Jiaotong University, No. 76 Yanta Westroad, Xi’an, People’s Republic of China, Email ;
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
5
|
Sun M, Wang R, Xia R, Xia Z, Wu Z, Wang T. Amelioration of myocardial ischemia/reperfusion injury in diabetes: A narrative review of the mechanisms and clinical applications of dexmedetomidine. Front Pharmacol 2022; 13:949754. [PMID: 36120296 PMCID: PMC9470922 DOI: 10.3389/fphar.2022.949754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms contributing to the pathogenesis of myocardial ischemia-reperfusion (I/R) injury are complex and multifactorial. Many strategies have been developed to ameliorate myocardial I/R injuries based on these mechanisms. However, the cardioprotective effects of these strategies appear to diminish in diabetic states. Diabetes weakens myocardial responses to therapies by disrupting intracellular signaling pathways which may be responsible for enhancing cellular resistance to damage. Intriguingly, it was found that Dexmedetomidine (DEX), a potent and selective α2-adrenergic agonist, appears to have the property to reverse diabetes-related inhibition of most intervention-mediated myocardial protection and exert a protective effect. Several mechanisms were revealed to be involved in DEX’s protection in diabetic rodent myocardial I/R models, including PI3K/Akt and associated GSK-3β pathway stimulation, endoplasmic reticulum stress (ERS) alleviation, and apoptosis inhibition. In addition, DEX could attenuate diabetic myocardial I/R injury by up-regulating autophagy, reducing ROS production, and inhibiting the inflammatory response through HMGB1 pathways. The regulation of autonomic nervous function also appeared to be involved in the protective mechanisms of DEX. In the present review, the evidence and underlying mechanisms of DEX in ameliorating myocardial I/R injury in diabetes are summarized, and the potential of DEX for the treatment/prevention of myocardial I/R injury in diabetic patients is discussed.
Collapse
Affiliation(s)
- Meng Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhilin Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| | - Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhilin Wu, ; Tingting Wang,
| |
Collapse
|
6
|
Li D, Qian J, Li J, Wang J, Liu W, Li Q, Wu D. Dexmedetomidine attenuates acute stress-induced liver injury in rats by regulating the miR-34a-5p/ROS/JNK/p38 signaling pathway. J Toxicol Sci 2022; 47:169-181. [PMID: 35527005 DOI: 10.2131/jts.47.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Dexmedetomidine (DEX) protects against acute stress-induced liver injury, but what's less clear lies in the specific mechanism. To elucidate the specific mechanism underlying DEX on acute stress-induced liver injury, an in vivo model was constructed on rats with acute stress-induced liver injury by 15 min of exhaustive swimming and 3 hr of immobilization. DEX (30 μg/kg) or miR-34a-5p agomir was injected into model rats. Open field test was used to verify the establishment of the model. Liver injury was observed by hematoxylin-eosin (H&E) staining. Contents of norepinephrine (NE), alanine aminotransfease (ALT) and aspartate aminotransferase (AST) in serum of rats were detected by enzyme-linked immunosorbent assay (ELISA) and those of oxidative stress markers (reactive oxygen species (ROS), Malondialdehyde (MDA), Glutathione (GSH), Superoxide Dismutase (SOD) and Glutathione Peroxidase (GPX)) were measured using commercial kits. Apoptosis of hepatocytes was detected by Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Western blot was performed to detect the expressions of SOD2, COX-2, cytochrome C, Cleaved caspase 3, Bax, Bcl-2, P-JNK, JNK, P-p38, p38 and c-AMP, p-PKA and PKA in liver tissues. As a result, liver injury in model rat was alleviated by DEX. DEX attenuated the increase in the levels of NE, ALT, AST, MDA, ROS, apoptosis, SOD2, COX-2, Cytochrome C, cleaved caspase 3, Bax, and P-JNK, P-p38, c-AMP, P-PKA and miR-34a-5p, and the decrease in the levels of SOD, GPX, GSH and Bcl-2 in model rats. Furthermore, miR-34a-5p overexpression could partly reverse the effects of DEX. Collectively, DEX could alleviate acute stress-induced liver injury through ROS/JNK/p38 signaling pathway via downregulation of miR-34a-5p.
Collapse
Affiliation(s)
- Dan Li
- Anesthesia Operation Department, Zhejiang Hospital, China
| | - Jiang Qian
- Anesthesia Operation Department, Zhejiang Hospital, China
| | - Junfeng Li
- School of Basic Medicine, Zhejiang Chinese Medical University, China
| | - Jia Wang
- Neurosurgery Department, Zhejiang Hospital, China
| | - Wenhong Liu
- School of Basic Medicine, Zhejiang Chinese Medical University, China
| | - Qinfei Li
- Anesthesia Operation Department, Zhejiang Hospital, China
| | - Dan Wu
- Anesthesia Operation Department, Zhejiang Hospital, China
| |
Collapse
|
7
|
Chen L, Tang T, Zheng X, Xiong Y. Protective Effects of Dexmedetomidine on Hippocampal Neurons in Rats Anesthetized with Sevoflurane. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To explore effects of dexmedetomidine (Dex) on cognitive function and hippocampal neuronal apoptosis in rats anesthetized with sevoflurane (Sevo), and regulation of brain-derived neurotrophic factor (BDNF) and its downstream signaling. 30 Sprague-Dawley (SD) rats were randomly divided
into control group inhaled 29% concentration oxygen), Sevo group (2 L/min oxygen flow +1.5% Sevo), Dex+Sevo group (after injection of 20 μg/kg Dex, treated with 2L/min oxygen flow+1.5% Sevo). Haematoxylin and eosin (HE) staining and Nissl’s staining were adopted to detect morphological
and functional changes in hippocampus of rats. Apoptosis was detected by immunofluorescence, BDNF expression was detected by immunohistochemistry. Reverse transcription PCR (RT-PCR) was conducted to detect mRNA expression of key proteins in downstream signaling of BDNF. The results showed
that Sevo induced apoptosis of hippocampus neurons, while Dex improved Sevo induced apoptosis. In contrast to the control, the positive expression of BDNF in hippocampus of Sevo group was notably decreased (P < 0.05), and that of Dex+Sevo group was notably higher in contrast to Sevo
group (P < 0.05). Signaling pathways of MAPK, PI3K-Akt, and Ras were predicted by String software as the downstream pathways of BDNF. RT-PCR results showed that these 3 signaling pathways were involved in Dex improving Sevo-induced cognitive impairment and hippocampal neuron apoptosis.
In conclusion, Dex could improve cognitive dysfunction and hippocampal neuron apoptosis in rats induced by Sevo, and the mechanism was related to upregulation of BDNF expression and activation of pathways of MAPK, PI3K-Akt, and Ras.
Collapse
Affiliation(s)
- Li Chen
- Department of Anesthesiology, Dalian Youyi Hospital, Dalian, 116001, China
| | - Tao Tang
- Department of Anesthesiology, Dalian Youyi Hospital, Dalian, 116001, China
| | - Xin Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Ying Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| |
Collapse
|
8
|
Wu Y, Qiu G, Zhang H, Zhu L, Cheng G, Wang Y, Li Y, Wu W. Dexmedetomidine alleviates hepatic ischaemia-reperfusion injury via the PI3K/AKT/Nrf2-NLRP3 pathway. J Cell Mol Med 2021; 25:9983-9994. [PMID: 34664412 PMCID: PMC8572787 DOI: 10.1111/jcmm.16871] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatic ischaemia-reperfusion (I/R) injury constitutes a tough difficulty in liver surgery. Dexmedetomidine (Dex) plays a protective role in I/R injury. This study investigated protective mechanism of Dex in hepatic I/R injury. The human hepatocyte line L02 received hypoxia/reoxygenation (H/R) treatment to stimulate cell model of hepatic I/R. The levels of pyroptosis proteins and inflammatory factors were detected. Functional rescue experiments were performed to confirm the effects of miR-494 and JUND on hepatic I/R injury. The levels of JUND, PI3K/p-PI3K, AKT/p-AKT, Nrf2, and NLRP3 activation were detected. The rat model of hepatic I/R injury was established to confirm the effect of Dex in vivo. Dex reduced pyroptosis and inflammation in H/R cells. Dex increased miR-494 expression, and miR-494 targeted JUND. miR-494 inhibition or JUND upregulation reversed the protective effect of Dex. Dex repressed NLRP3 inflammasome by activating the PI3K/AKT/Nrf2 pathway. In vivo experiments confirmed the protective effect of Dex on hepatic I/R injury. Overall, Dex repressed NLRP3 inflammasome and alleviated hepatic I/R injury via the miR-494/JUND/PI3K/AKT/Nrf2 axis.
Collapse
Affiliation(s)
- Yan Wu
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Gaolin Qiu
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Hainie Zhang
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Leilei Zhu
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Gao Cheng
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Yiqiao Wang
- Department of AnesthesiologyAnhui NO.2 Provincial People's HospitalHefeiChina
| | - Yuanhai Li
- Department of AnesthesiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Weiwei Wu
- Department of AnesthesiologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
9
|
Yang Q, Zhao ZZ, Xie J, Wang YP, Yang K, Guo Y, Wang JF, Deng XM. Senkyunolide I attenuates hepatic ischemia/reperfusion injury in mice via anti-oxidative, anti-inflammatory and anti-apoptotic pathways. Int Immunopharmacol 2021; 97:107717. [PMID: 33933846 DOI: 10.1016/j.intimp.2021.107717] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Senkyunolide I (SEI)exerts considerable protective effects in various disease models, but its effect on hepatic ischemia-reperfusion (I/R) injury remains unknown. This research aimed to investigate the effect of SEI in a murine model of hepatic I/R injury. METHODS With modified liver I/R murine model, low, medium and high doses of SEI were injected intraperitoneally after operation. After 6 h of reperfusion, the blood and liver were collected. Serum ALT and AST were detected by automatic analyzer, while liver injury was evaluated by HE staining. High-dose SEI was selected to further explore its impacts on oxidative stress, inflammatory responses and apoptosis induced by hepatic I/R. The pharmacological effect of SEI was also compared with a positive control, glutathione (GSH). We used ELISA to detect serum TNF-α, IL-1 β and IL-6, special kit to explore activities of SOD and GSH-Px, and the content of MDA, and western blotting to detect HO-1, Bax and Bcl-2 levels, and to perceive expressions and phosphorylations of NF- κB p65 and p38/ERK/JNK in liver tissues. Apoptosis in liver tissue was evaluated by TUNEL. The antioxidative effect of SEI was further investigated using the HuCCT1 cells stimulated with H2O2 and the role of SEI on regulation of Nrf-2/HO-1 was determined. RESULTS 200 mg/kg of SEI was optimal dose for treating liver I/R injury. Elevated ALT, AST and histopathological injury in I/R liver was attenuated by SEI administration, similarly to GSH. Serum TNF-α, IL-1β, and IL-6 were reduced in liver I/R mice treated with SEI, and in liver tissues, phosphorylation of p65 NF-κB and MAPK kinases (p38, ERK, JNK), were inhibited. SEI reduced the MDA content, but increased HO-1 level and enhanced SOD and GSH-Px activities. Apoptosis of liver tissues was decreased, while SEI inhibited Bax and elevated Bcl-2 expression. In in vitro experiments, H2O2 reduced the survival rate of HuCCT1 cells, which was protected by SEI administration. SEI reduced the ROS and MDA content. The transportation of Nrf-2 into the nucleus was enhanced and HO-1 expression was upregulated. CONCLUSIONS SEI attenuates hepatic I/R injury in mice via anti-oxidative, anti-inflammatory and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Qing Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhen-Zhen Zhao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jian Xie
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yun-Peng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Kai Yang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Guo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jia-Feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Xiao-Ming Deng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|