1
|
Kioulaphides S, García AJ. Encapsulation and immune protection for type 1 diabetes cell therapy. Adv Drug Deliv Rev 2024; 207:115205. [PMID: 38360355 PMCID: PMC10948298 DOI: 10.1016/j.addr.2024.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Type 1 Diabetes (T1D) involves the autoimmune destruction of insulin-producing β-cells in the pancreas. Exogenous insulin injections are the current therapy but are user-dependent and cannot fully recapitulate physiological insulin secretion dynamics. Since the emergence of allogeneic cell therapy for T1D, the Edmonton Protocol has been the most promising immunosuppression protocol for cadaveric islet transplantation, but the lack of donor islets, poor cell engraftment, and required chronic immunosuppression have limited its application as a therapy for T1D. Encapsulation in biomaterials on the nano-, micro-, and macro-scale offers the potential to integrate islets with the host and protect them from immune responses. This method can be applied to different cell types, including cadaveric, porcine, and stem cell-derived islets, mitigating the issue of a lack of donor cells. This review covers progress in the efforts to integrate insulin-producing cells from multiple sources to T1D patients as a form of cell therapy.
Collapse
Affiliation(s)
- Sophia Kioulaphides
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
2
|
Park S, Lee H, Park EM, Roh J, Kang PI, Shim J, Choi K, Kang HJ. Initial investigation on the feasibility of porcine red blood cells from genetically modified pigs as an alternative to human red blood cells for transfusion. Front Immunol 2023; 14:1298035. [PMID: 38035112 PMCID: PMC10682702 DOI: 10.3389/fimmu.2023.1298035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
The decline in blood donation rates and the ongoing shortage of blood products pose significant challenges to medical societies. One potential solution is to use porcine red blood cells (pRBCs) from genetically modified pigs as an alternative to human red blood cells (hRBCs). However, adverse immunological reactions remain a significant obstacle to their use. This study aimed to evaluate the compatibility of diverse genetically modified pRBCs with human serum. We acquired human complement-competent serum, complement 7 (C7)-deficient serum, and hRBCs from all ABO blood types. Additionally, we used leftover clinical samples from health checkups for further evaluation. pRBCs were collected from wild-type (WT) and genetically modified pigs: triple knockout (TKO), quadruple KO (QKO), and TKO/hCD55.hCD39 knockin (hCD55.hCD39KI). The extent of C3 deposition on RBCs was measured using flow cytometry after incubation in C7-deficient serum diluted in Ca++-enriched or Ca++-depleted and Mg++-enriched buffers. The binding of immunoglobulin (Ig) M/IgG antibody to RBCs after incubation in ABO-type human serum was evaluated using flow cytometry. Naïve human serum- or sensitized monkey serum-mediated hemolysis was also evaluated. Phagocytosis was assessed by incubating labeled RBCs with the human monocytic cell line THP-1 and measurement by flow cytometry. All three genetic modifications significantly improved the compatibility of pRBCs with human serum relative to that of WT pRBCs. The extent of IgM/IgG binding to genetically modified pRBCs was lower than that of WT pRBCs and similar to that of O-type hRBCs. Total and alternative pathway complement activation in all three genetically modified pRBCs was significantly weaker than that in WT pRBCs and did not differ from that in O-type hRBCs. The extent of serum-mediated hemolysis and phagocytosis of these genetically modified pRBCs was low and similar to that of O-type hRBCs. Sensitized monkey serum-mediated hemolysis in QKO and TKO/hCD55.hCD39KI pRBCs was higher than in O-type hRBCs but lower than in TKO pRBCs. The elimination of porcine carbohydrate antigens in genetically modified pigs significantly enhanced pRBC compatibility with naïve human sera, which was comparable to that of O-type hRBCs. These findings provide valuable insights into the development of pRBCs as potential alternatives to hRBCs.
Collapse
Affiliation(s)
- Sangkeun Park
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Haneulnari Lee
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Eun Mi Park
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Juhye Roh
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Pul Ip Kang
- Department of Transgenic Animal Research, Optipharm Inc., Cheongju, Republic of Korea
| | - Joohyun Shim
- Department of Transgenic Animal Research, Optipharm Inc., Cheongju, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm Inc., Cheongju, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
3
|
Macdougall JD, Thomas KO, Iweala OI. The Meat of the Matter: Understanding and Managing Alpha-Gal Syndrome. Immunotargets Ther 2022; 11:37-54. [PMID: 36134173 PMCID: PMC9484563 DOI: 10.2147/itt.s276872] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Alpha-gal syndrome is an unconventional food allergy, characterized by IgE-mediated hypersensitivity responses to the glycan galactose-alpha-1,3-galactose (alpha-gal) and not to a food-protein. In this review, we discuss how alpha-gal syndrome reframes our current conception of the mechanisms of pathogenesis of food allergy. The development of alpha-gal IgE is associated with tick bites though the possibility of other parasites promoting sensitization to alpha-gal remains. We review the immune cell populations involved in the sensitization and effector phases of alpha-gal syndrome and describe the current understanding of why allergic responses to ingested alpha-gal can be delayed by several hours. We review the foundation of management in alpha-gal syndrome, namely avoidance, but also discuss the use of antihistamines, mast cell stabilizers, and the emerging role of complementary and alternative therapies, biological products, and oral immunotherapy in the management of this condition. Alpha-gal syndrome influences the safety and tolerability of medications and medical devices containing or derived from mammalian products and impacts quality of life well beyond food choices.
Collapse
Affiliation(s)
- Jessica D Macdougall
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599, USA.,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Kevin O Thomas
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599, USA.,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Onyinye I Iweala
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599, USA.,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
4
|
Lee H, Park EM, Ko N, Choi K, Oh KB, Kang HJ. Effect of Factor H on Complement Alternative Pathway Activation in Human Serum Remains on Porcine Cells Lacking N-Glycolylneuraminic Acid. Front Immunol 2022; 13:859261. [PMID: 35444661 PMCID: PMC9014258 DOI: 10.3389/fimmu.2022.859261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Triple knockout (TKO) donor pigs lacking alpha-1,3-galactose (Gal), N-glycolylneuraminic acid (Neu5Gc), and Sd(a) expressions were developed to improve the clinical success of xenotransplantation. Neu5Gc, a sialic acid expressed on cell surfaces, recruits factor H to protect cells from attack by the complement system. Lack of Neu5Gc expression may cause unwanted complement activation, abrogating the potential benefit of gene-modified donor pigs. To investigate whether TKO porcine cells display increased susceptibility to complement activation in human serum, pathway-specific complement activation, apoptosis, and human platelet aggregation by porcine cells were compared between alpha-1,3-galactosyltransferase gene-knockout (GTKO) and TKO porcine cells. Methods Primary porcine peripheral blood mononuclear cells (pPBMCs) and endothelial cells (pECs) from GTKO and TKO pigs were used. Cells were incubated in human serum diluted in gelatin veronal buffer (GVB++) or Mg++-EGTA GVB, and C3 deposition and apoptotic changes in these cells were measured by flow cytometry. C3 deposition levels were also measured after incubating these cells in 10% human serum supplemented with human factor H. Platelet aggregation in human platelet-rich plasma containing GTKO or TKO pECs was analyzed. Results The C3 deposition level in GTKO pPBMCs or pECs in GVB++ was significantly higher than that of TKO pPBMCs or pECs, respectively, but C3 deposition levels in Mg++-EGTA-GVB were comparable between them. The addition of factor H into the porcine cell suspension in 10% serum in Mg++ -EGTA-GVB inhibited C3 deposition in a dose-dependent manner, and the extent of inhibition by factor H was similar between GTKO and TKO porcine cells. The percentage of late apoptotic cells in porcine cell suspension in GVB++ increased with the addition of human serum, of which the net increase was significantly less in TKO pPBMCs than in GTKO pPBMCs. Finally, the lag time of platelet aggregation in recalcified human plasma was significantly prolonged in the presence of TKO pECs compared to that in the presence of GTKO pECs. Conclusion TKO genetic modification protects porcine cells from serum-induced complement activation and apoptotic changes, and delays recalcification-induced human platelet aggregation. It does not hamper factor H recruitment on cell surfaces, allowing the suppression of alternative complement pathway activation.
Collapse
Affiliation(s)
- Haneulnari Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - Eun Mi Park
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, South Korea
| | - Nayoung Ko
- Department of Transgenic Animal Research, Optipharm Inc., Cheongju, South Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm Inc., Cheongju, South Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration (RDA), Wanju, South Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, South Korea
| |
Collapse
|
5
|
Carson AS, Gardner A, Iweala OI. Where's the Beef? Understanding Allergic Responses to Red Meat in Alpha-Gal Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:267-277. [PMID: 35017216 PMCID: PMC8928418 DOI: 10.4049/jimmunol.2100712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/19/2021] [Indexed: 01/17/2023]
Abstract
Alpha-gal syndrome (AGS) describes a collection of symptoms associated with IgE-mediated hypersensitivity responses to the glycan galactose-alpha-1,3-galactose (alpha-gal). Individuals with AGS develop delayed hypersensitivity reactions, with symptoms occurring >2 h after consuming mammalian ("red") meat and other mammal-derived food products. The mechanisms of pathogenesis driving this paradigm-breaking food allergy are not fully understood. We review the role of tick bites in the development of alpha-gal-specific IgE and highlight innate and adaptive immune cells possibly involved in alpha-gal sensitization. We discuss the impact of alpha-gal glycosylation on digestion and metabolism of alpha-gal glycolipids and glycoproteins, and the implications for basophil and mast cell activation and mediator release that generate allergic symptoms in AGS.
Collapse
Affiliation(s)
- Audrey S. Carson
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aliyah Gardner
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Onyinye I. Iweala
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology,Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|