1
|
Tang L, Peng S, Zhuang X, He Y, Song Y, Nie H, Zheng C, Pan Z, Lam AK, He M, Shi X, Li B, Xu WW. Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention. MEDCOMM – ONCOLOGY 2025; 4. [DOI: 10.1002/mog2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/04/2025]
Abstract
ABSTRACTMetastasis remains a leading cause of cancer‐related deaths, defined by a complex, multi‐step process in which tumor cells spread and form secondary growths in distant tissues. Despite substantial progress in understanding metastasis, the molecular mechanisms driving this process and the development of effective therapies remain incompletely understood. Elucidating the molecular pathways governing metastasis is essential for the discovery of innovative therapeutic targets. The rapid advancements in sequencing technologies and the expansion of biological databases have significantly deepened our understanding of the molecular drivers of metastasis and associated drug resistance. This review focuses on the molecular drivers of metastasis, particularly the roles of genetic mutations, epigenetic changes, and post‐translational modifications in metastasis progression. We also examine how the tumor microenvironment influences metastatic behavior and explore emerging therapeutic strategies, including targeted therapies and immunotherapies. Finally, we discuss future research directions, stressing the importance of novel treatment approaches and personalized strategies to overcome metastasis and improve patient outcomes. By integrating contemporary insights into the molecular basis of metastasis and therapeutic innovation, this review provides a comprehensive framework to guide future research and clinical advancements in metastatic cancer.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Shao‐Cong Peng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xiao‐Wan Zhuang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Yan He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Yu‐Xiang Song
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Hao Nie
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Can‐Can Zheng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Zhen‐Yu Pan
- Department of Radiation Oncology, The Affiliated Huizhou Hospital Guangzhou Medical University Huizhou China
| | - Alfred King‐Yin Lam
- Cancer Molecular Pathology and Griffith Medical School Griffith University Gold Coast Queensland Australia
| | - Ming‐Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Xing‐Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Bin Li
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wen Wen Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| |
Collapse
|
2
|
Yin Q, Lin D, Zeng W, Gu S, Zhu C, Liang C, Yang Y. EZH2-Mediated PHF10 Suppression Amplifies HMGB1/NF-κB Axis That Confers Chemotherapy Resistance in Cholangiocarcinoma. J Cell Mol Med 2025; 29:e70363. [PMID: 39904827 PMCID: PMC11794005 DOI: 10.1111/jcmm.70363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
Chemoresistance represents a major threat to the treatment of human cancers, including cholangiocarcinoma (CHOL). Aberrant epigenetic events contribute most to the progression of CHOL and chemotherapy efficacy. PHF10, one subunit of SWI/SNF complex, expressed highly in tumours that correlated with tumorigenesis. However, the roles of PHF10 in CHOL remains unclear. Here, we utilised the bioinformatic analysis to reveal that PHF10 expressed lowly in CHOL samples relative to normal tissues. Functionally, we demonstrated that PHF10 deficiency enhanced cell proliferation, migration and self-renewal capacities of CHOL cells. PHF10 ablation further enhanced the chemoresistance of CHOL cells. The transcriptome analysis revealed that PHF10-KO could notably alter several oncogenic crosstalk, including the NF-kB signalling. As the top hit, HMGB1 mRNA expressions had the sharpest increase upon PHF10 deficiency. PHF10 coordinated with Setdb1 to mediate the H3K9me3 modifications on the HMGB1 promoter to suppress its expressions. Low PHF10 relied on HMGB1 to promote the progression of CHOL cells in vitro and in vivo. Furthermore, EZH2 mediated the H3K27me3 enrichment on the PHF10 promoter region that contributes to its low expressions. Lastly, the HMGB1 inhibitor (Glycyrrhizin) decreased proliferation rate of PHF10-deleted cells in vitro and in vivo. Targeting HMGB1 rendered PHF10low CHOL re-sensitive to chemotherapy. Collectively, this study demonstrated that PHF10 functions as a tumour suppressor in CHOL, and is a novel target to predict and overcome chemoresistance.
Collapse
Affiliation(s)
- Qiushi Yin
- Department of Hepatobiliary Pancreatic SurgeryThe First Affiliated Hospital of Hainan Medical UniversityHaikouChina
- Hainan Medical UniversityHaikouChina
| | - Daning Lin
- Department of Hepatobiliary Pancreatic SurgeryThe First Affiliated Hospital of Hainan Medical UniversityHaikouChina
- Hainan Medical UniversityHaikouChina
| | - Weiqian Zeng
- Department of Hepatobiliary Pancreatic SurgeryThe First Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Shijing Gu
- Department of Hepatobiliary Pancreatic SurgeryThe First Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Chuangshi Zhu
- Department of Hepatobiliary Pancreatic SurgeryThe First Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Changfu Liang
- Department of Hepatobiliary Pancreatic SurgeryThe First Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Yan Yang
- Department of Hepatobiliary Pancreatic SurgeryThe First Affiliated Hospital of Hainan Medical UniversityHaikouChina
| |
Collapse
|
3
|
Campanharo CV, Dos Santos Silveira LV, Meira DD, Casotti MC, Altoé LSC, Louro ID, Gonçalves AFM, Machado AM, Paiva BS, de Souza Inocencio E, Rocha FVV, Pesente F, de Castro GDSC, da Paixão JPDS, Bourguignon JHB, Carneiro JS, de Oliveira JR, de Souza Freire P, Zamprogno SB, Dos Santos Uchiya T, de Paula Rezende T, de Pádua Sanders Medeiros V. Pan-cancer and multiomics: advanced strategies for diagnosis, prognosis, and therapy in the complex genetic and molecular universe of cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03819-4. [PMID: 39725831 DOI: 10.1007/s12094-024-03819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
The pan-cancer and multi-omics approach is motivated by the genetic and molecular complexity inherent in the varied types of cancer. This method presents itself as a crucial resource for advancing early diagnosis, defining prognoses and identifying treatments that share common bases between different forms of tumors. The aim of this article is to explore pan-cancer analysis in conjunction with multi-omics strategies, evaluating laboratory, computational, clinical procedures and their consequences, as well as examining the tumor microenvironment, epigenetics and future directions of these technologies in patient management. To this end, a literature review was conducted using PUBMED, resulting in the selection of 260 articles, of which 81 were carefully chosen to support this analysis. The pan-cancer methodology is applied to the study of this microenvironment with the aim of investigating its common characteristics through multiomics data. The development of new therapies depends on understanding the oncogenic pathways associated with different cancers. Thus, the integration of multi-omics and pan-cancer analyzes offers an innovative perspective in the search for new control points, metabolic pathways and markers, in addition to facilitating the identification of patterns common to multiple cancer types, allowing the development of targeted treatments. In this way, the convergence of multiomics and clinical approaches promotes a broad view of cancer biology, leading to more effective and personalized therapies.
Collapse
Affiliation(s)
- Camilly Victória Campanharo
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Lívia Valle Dos Santos Silveira
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil.
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - André Felipe Monteiro Gonçalves
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - André Manhães Machado
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Breno Sousa Paiva
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Ester de Souza Inocencio
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Fabio Victor Vieira Rocha
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Fellipe Pesente
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Giulia de Souza Cupertino de Castro
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - João Pedro Dos Santos da Paixão
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - José Henrique Borges Bourguignon
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Júlia Salarini Carneiro
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Juliana Ribeiro de Oliveira
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Pâmela de Souza Freire
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Sophia Bridi Zamprogno
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Taissa Dos Santos Uchiya
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Thais de Paula Rezende
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Vinícius de Pádua Sanders Medeiros
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| |
Collapse
|
4
|
Xi Y, Yang L, Burtness B, Wang H. Vaping and tumor metastasis: current insights and progress. Cancer Metastasis Rev 2024; 44:4. [PMID: 39581913 PMCID: PMC11792352 DOI: 10.1007/s10555-024-10221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
Tumor metastasis is the primary cause of cancer-related mortality and remains a major hurdle in cancer treatment. Traditional cigarette smoking has been extensively studied for its role in promoting metastasis. However, the impact of e-cigarette (e-cig) on cancer metastasis is not well understood despite their increasing popularity as a supposedly safer alternative. This mini review synthesizes current literature on the effects of e-cig on cancer metastasis, focusing on the processes of dissemination, dormancy, and colonization. It also incorporates recent findings from our laboratory regarding the role of e-cig in tumor progression. E-cig exposure enhances metastatic potential through various mechanisms: it induces epithelial-mesenchymal transition (EMT), increasing cell migratory and invasive capabilities; promotes lymphangiogenesis, aiding tumor cell spread; and alters the pre-metastatic niche to support dormant tumor cells, enhancing their reactivation and colonization. Furthermore, e-cig induce significant epigenetic changes, such as DNA methylation and histone modifications, which regulate genes involved in metastasis. Our data suggest that e-cig upregulate histone demethylases like KDM6B in macrophages, impacting the TME and promoting metastasis. These findings underscore the need for further research to understand the long-term health implications of e-cig use and inform public health policies to reduce e-cig use.
Collapse
Affiliation(s)
- Yibo Xi
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - Lei Yang
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - Barbara Burtness
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - He Wang
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
5
|
Tao J, Bian X, Zhou J, Zhang M. From microscopes to molecules: The evolution of prostate cancer diagnostics. Cytojournal 2024; 21:29. [PMID: 39391208 PMCID: PMC11464998 DOI: 10.25259/cytojournal_36_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 10/12/2024] Open
Abstract
In the ever-evolving landscape of oncology, the battle against prostate cancer (PCa) stands at a transformative juncture, propelled by the integration of molecular diagnostics into traditional cytopathological frameworks. This synthesis not only heralds a new epoch of precision medicine but also significantly enhances our understanding of the disease's genetic intricacies. Our comprehensive review navigates through the latest advancements in molecular biomarkers and their detection technologies, illuminating the potential these innovations hold for the clinical realm. With PCa persisting as one of the most common malignancies among men globally, the quest for early and precise diagnostic methods has never been more critical. The spotlight in this endeavor shines on the molecular diagnostics that reveal the genetic underpinnings of PCa, offering insights into its onset, progression, and resistance to conventional therapies. Among the genetic aberrations, the TMPRSS2-ERG fusion and mutations in genes such as phosphatase and tensin homolog (PTEN) and myelocytomatosis viral oncogene homolog (MYC) are identified as significant players in the disease's pathology, providing not only diagnostic markers but also potential therapeutic targets. This review underscores a multimodal diagnostic approach, merging molecular diagnostics with cytopathology, as a cornerstone in managing PCa effectively. This strategy promises a future where treatment is not only tailored to the individual's genetic makeup but also anticipates the disease's trajectory, offering hope for improved prognosis and quality of life for patients.
Collapse
Affiliation(s)
- Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaokang Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Kiri S, Ryba T. Cancer, metastasis, and the epigenome. Mol Cancer 2024; 23:154. [PMID: 39095874 PMCID: PMC11295362 DOI: 10.1186/s12943-024-02069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer is the second leading cause of death worldwide and disease burden is expected to increase globally throughout the next several decades, with the majority of cancer-related deaths occurring in metastatic disease. Cancers exhibit known hallmarks that endow them with increased survival and proliferative capacities, frequently as a result of de-stabilizing mutations. However, the genomic features that resolve metastatic clones from primary tumors are not yet well-characterized, as no mutational landscape has been identified as predictive of metastasis. Further, many cancers exhibit no known mutation signature. This suggests a larger role for non-mutational genome re-organization in promoting cancer evolution and dissemination. In this review, we highlight current critical needs for understanding cell state transitions and clonal selection advantages for metastatic cancer cells. We examine links between epigenetic states, genome structure, and misregulation of tumor suppressors and oncogenes, and discuss how recent technologies for understanding domain-scale regulation have been leveraged for a more complete picture of oncogenic and metastatic potential.
Collapse
Affiliation(s)
- Saurav Kiri
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd., Orlando, 32827, Florida, USA.
| | - Tyrone Ryba
- Department of Natural Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, 34243, Florida, USA.
| |
Collapse
|
7
|
Liang Y, Jiang Y, Fang L, Dai Z, Zhang S, Zhou Y, Cai Y, Wang D, Wang Z, Ye X, Liang B. Periodic magnetic modulation enhanced electrochemical analysis for highly sensitive determination of genomic DNA methylation. Anal Biochem 2024; 690:115509. [PMID: 38508332 DOI: 10.1016/j.ab.2024.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/02/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
DNA methylation aberrations have a strong correlation with cancer in early detection, diagnosis, and prognosis, which make them possible candidate biomarkers. Electrochemical biosensors offer rapid protocols for detecting DNA methylation status with minimal pretreatment of samples. However, the inevitable presence of background current in the time domain, including electrochemical noise and variations, limits the detection performance of these biosensors, especially for low concentration analytes. Here, we propose an ultrasensitive frequency-domain electrochemical analysis strategy to effectively separate the weak signals from background current. To achieve this, we employed periodic magnetic field modulation of magnetic beads (MBs) on and off the electrode surface to generate a periodic electrochemical signal for subsequent frequency-domain analysis. By capturing labeled MBs with as low as 0.5 pg of DNA, we successfully demonstrated a highly sensitive electrochemical method for determination of genome-wide DNA methylation levels. We also validated the effectiveness of this methodology using DNA samples extracted from three types of hepatocellular carcinoma (HCC) cell lines. The results revealed varying genomic methylation levels among different HCC cell lines, indicating the potential application of this approach for early-stage cancer detection in terms of DNA methylation status.
Collapse
Affiliation(s)
- Yitao Liang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Yu Jiang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Lu Fang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Zhen Dai
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Shanshan Zhang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Yue Zhou
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Yu Cai
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, PR China
| | - Dong Wang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Zhaoyang Wang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Xuesong Ye
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China.
| | - Bo Liang
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China; Binjiang Institute of Zhejiang University, Hangzhou, 310053, PR China.
| |
Collapse
|
8
|
Fan J, Liu Q, Liu X, Gong M, Leong II, Tsang Y, Xu X, Lei S, Duan L, Zhang Y, Liao M, Zhuang L. The effect of epigenetic aging on neurodegenerative diseases: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1372518. [PMID: 38800486 PMCID: PMC11116635 DOI: 10.3389/fendo.2024.1372518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
Background Aging has always been considered as a risk factor for neurodegenerative diseases, but there are individual differences and its mechanism is not yet clear. Epigenetics may unveil the relationship between aging and neurodegenerative diseases. Methods Our study employed a bidirectional two-sample Mendelian randomization (MR) design to assess the potential causal association between epigenetic aging and neurodegenerative diseases. We utilized publicly available summary datasets from several genome-wide association studies (GWAS). Our investigation focused on multiple measures of epigenetic age as potential exposures and outcomes, while the occurrence of neurodegenerative diseases served as potential exposures and outcomes. Sensitivity analyses confirmed the accuracy of the results. Results The results show a significant decrease in risk of Parkinson's disease with GrimAge (OR = 0.8862, 95% CI 0.7914-0.9924, p = 0.03638). Additionally, we identified that HannumAge was linked to an increased risk of Multiple Sclerosis (OR = 1.0707, 95% CI 1.0056-1.1401, p = 0.03295). Furthermore, we also found that estimated plasminogen activator inhibitor-1(PAI-1) levels demonstrated an increased risk for Alzheimer's disease (OR = 1.0001, 95% CI 1.0000-1.0002, p = 0.04425). Beyond that, we did not observe any causal associations between epigenetic age and neurodegenerative diseases risk. Conclusion The findings firstly provide evidence for causal association of epigenetic aging and neurodegenerative diseases. Exploring neurodegenerative diseases from an epigenetic perspective may contribute to diagnosis, prognosis, and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jingqi Fan
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Liu
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Liu
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengjiao Gong
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ian I. Leong
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - YauKeung Tsang
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Xu
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suying Lei
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lining Duan
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Zhang
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Muxi Liao
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixing Zhuang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Li L, Qin Y, Chen Y. The enzymes of serine synthesis pathway in cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119697. [PMID: 38382845 DOI: 10.1016/j.bbamcr.2024.119697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Metastasis, the major cause of cancer mortality, requires cancer cells to reprogram their metabolism to adapt to and thrive in different environments, thereby leaving metastatic cells metabolic characteristics different from their parental cells. Mounting research has revealed that the de novo serine synthesis pathway (SSP), a glycolytic branching pathway that consumes glucose carbons for serine makeup and α-ketoglutarate generation and thus supports the proliferation, survival, and motility of cancer cells, is one such reprogrammed metabolic pathway. During different metastatic cascades, the SSP enzyme proteins or their enzymatic activity are both dynamically altered; manipulating their expression or catalytic activity could effectively prevent the progression of cancer metastasis; and the SSP enzymatic proteins could even conduce to metastasis via their nonenzymatic functions. In this article we overview the SSP dynamics during cancer metastasis and put the focuses on the regulatory role of the SSP in metastasis and the underlying mechanisms that mainly involve cellular anabolism/catabolism, redox balance, and epigenetics, aiming to provide a theoretical basis for the development of therapeutic strategies for targeting metastatic lesions.
Collapse
Affiliation(s)
- Lei Li
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuting Qin
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 421001, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
10
|
Hu X, Chen G, Huang Y, Cheng Q, Zhuo J, Su R, He C, Wu Y, Liu Z, Yang B, Wang S, Meng L, Zheng S, Lu D, Wei Q, Yang J, Wei X, Chen R, Xu X. Integrated Multiomics Reveals Silencing of has_circ_0006646 Promotes TRIM21-Mediated NCL Ubiquitination to Inhibit Hepatocellular Carcinoma Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306915. [PMID: 38357830 PMCID: PMC11040345 DOI: 10.1002/advs.202306915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Recent studies suggest that circular RNA (circRNA)-mediated post-translational modification of RNA-binding proteins (RBP) plays a pivotal role in metastasis of hepatocellular carcinoma (HCC). However, the specific mechanism and potential clinical therapeutic significance remain vague. This study attempts to profile the regulatory networks of circRNA and RBP using a multi-omics approach. Has_circ_0006646 (circ0006646) is an unreported circRNA in HCC and is associated with a poor prognosis. Silencing of circ0006646 significantly hinders metastasis in vivo. Mechanistically, circ0006646 prevents the interaction between nucleolin (NCL) and the E3 ligase tripartite motif-containing 21 to reduce the proteasome-mediated degradation of NCL via K48-linked polyubiquitylation. Furthermore, the change of NCL expression is proven to affect the phosphorylation levels of multiple proteins and inhibit p53 translation. Moreover, patient-derived tumor xenograft and lentivirus injection, which is conducted to simulate clinical treatment confirmed the potential therapeutic value. Overall, this study describes the integrated multi-omics landscape of circRNA-mediated NCL ubiquitination degradation in HCC metastasis and provides a novel therapeutic target.
Collapse
Affiliation(s)
- Xin Hu
- Zhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhou310003China
| | - Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhou310053China
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhou310053China
| | - Qiyang Cheng
- Department of Hepatobiliary SurgeryBeijing Chaoyang Hospital affiliated to Capital Medical UniversityBeijing100020China
| | - Jianyong Zhuo
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Renyi Su
- Zhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
| | - Chiyu He
- Zhejiang University School of MedicineHangzhou310058China
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhou310022China
| | - Yichao Wu
- Zhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
| | - Zhikun Liu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Beng Yang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310006China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Lijun Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhou310003China
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhou310022China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310006China
| | - Di Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Jiayin Yang
- Department of Liver SurgeryLiver Transplantation CenterWest China Hospital of Sichuan UniversityChengdu332001China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Ronggao Chen
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhou310003China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310006China
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhou310003China
| |
Collapse
|
11
|
Banerjee R, Ajithkumar P, Keestra N, Smith J, Gimenez G, Rodger EJ, Eccles MR, Antony J, Weeks RJ, Chatterjee A. Targeted DNA Methylation Editing Using an All-in-One System Establishes Paradoxical Activation of EBF3. Cancers (Basel) 2024; 16:898. [PMID: 38473261 DOI: 10.3390/cancers16050898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Cutaneous melanoma is rapidly on the rise globally, surpassing the growth rate of other cancers, with metastasis being the primary cause of death in melanoma patients. Consequently, understanding the mechanisms behind this metastatic process and exploring innovative treatments is of paramount importance. Recent research has shown promise in unravelling the role of epigenetic factors in melanoma progression to metastasis. While DNA hypermethylation at gene promoters typically suppresses gene expression, we have contributed to establishing the newly understood mechanism of paradoxical activation of genes via DNA methylation, where high methylation coincides with increased gene activity. This mechanism challenges the conventional paradigm that promoter methylation solely silences genes, suggesting that, for specific genes, it might actually activate them. Traditionally, altering DNA methylation in vitro has involved using global demethylating agents, which is insufficient for studying the mechanism and testing the direct consequence of gene methylation changes. To investigate promoter hypermethylation and its association with gene activation, we employed a novel approach utilising a CRISPR-SunTag All-in-one system. Here, we focused on editing the DNA methylation of a specific gene promoter segment (EBF3) in melanoma cells using the All-in-one system. Using bisulfite sequencing and qPCR with RNA-Seq, we successfully demonstrated highly effective methylation and demethylation of the EBF3 promoter, with subsequent gene expression changes, to establish and validate the paradoxical role of DNA methylation. Further, our study provides novel insights into the function of the EBF3 gene, which remains largely unknown. Overall, this study challenges the conventional view of methylation as solely a gene-silencing mechanism and demonstrates a potential function of EBF3 in IFN pathway signalling, potentially uncovering new insights into epigenetic drivers of malignancy and metastasis.
Collapse
Affiliation(s)
- Rakesh Banerjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Priyadarshana Ajithkumar
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Nicholas Keestra
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
- School of Health Sciences and Technology, UPES University, Dehradun 248007, India
| |
Collapse
|
12
|
Maurya SK, Rehman AU, Zaidi MAA, Khan P, Gautam SK, Santamaria-Barria JA, Siddiqui JA, Batra SK, Nasser MW. Epigenetic alterations fuel brain metastasis via regulating inflammatory cascade. Semin Cell Dev Biol 2024; 154:261-274. [PMID: 36379848 PMCID: PMC10198579 DOI: 10.1016/j.semcdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Brain metastasis (BrM) is a major threat to the survival of melanoma, breast, and lung cancer patients. Circulating tumor cells (CTCs) cross the blood-brain barrier (BBB) and sustain in the brain microenvironment. Genetic mutations and epigenetic modifications have been found to be critical in controlling key aspects of cancer metastasis. Metastasizing cells confront inflammation and gradually adapt in the unique brain microenvironment. Currently, it is one of the major areas that has gained momentum. Researchers are interested in the factors that modulate neuroinflammation during BrM. We review here various epigenetic factors and mechanisms modulating neuroinflammation and how this helps CTCs to adapt and survive in the brain microenvironment. Since epigenetic changes could be modulated by targeting enzymes such as histone/DNA methyltransferase, deacetylases, acetyltransferases, and demethylases, we also summarize our current understanding of potential drugs targeting various aspects of epigenetic regulation in BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Mohd Ali Abbas Zaidi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | | | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA.
| |
Collapse
|
13
|
Ajithkumar P, Vasantharajan SS, Pattison S, McCall JL, Rodger EJ, Chatterjee A. Exploring Potential Epigenetic Biomarkers for Colorectal Cancer Metastasis. Int J Mol Sci 2024; 25:874. [PMID: 38255946 PMCID: PMC10815915 DOI: 10.3390/ijms25020874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Metastatic progression is a complex, multistep process and the leading cause of cancer mortality. There is growing evidence that emphasises the significance of epigenetic modification, specifically DNA methylation and histone modifications, in influencing colorectal (CRC) metastasis. Epigenetic modifications influence the expression of genes involved in various cellular processes, including the pathways associated with metastasis. These modifications could contribute to metastatic progression by enhancing oncogenes and silencing tumour suppressor genes. Moreover, specific epigenetic alterations enable cancer cells to acquire invasive and metastatic characteristics by altering cell adhesion, migration, and invasion-related pathways. Exploring the involvement of DNA methylation and histone modification is crucial for identifying biomarkers that impact cancer prediction for metastasis in CRC. This review provides a summary of the potential epigenetic biomarkers associated with metastasis in CRC, particularly DNA methylation and histone modifications, and examines the pathways associated with these biomarkers.
Collapse
Affiliation(s)
- Priyadarshana Ajithkumar
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
| | - Sai Shyam Vasantharajan
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
| | - Sharon Pattison
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - John L. McCall
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (P.A.)
- School of Health Sciences and Technology, UPES University, Dehradun 248007, India
| |
Collapse
|
14
|
Lin T, Guo J, Peng Y, Li M, Liu Y, Yu X, Wu N, Yu W. Pan-cancer transcriptomic data of ABI1 transcript variants and molecular constitutive elements identifies novel cancer metastatic and prognostic biomarkers. Cancer Biomark 2024; 39:49-62. [PMID: 37545215 PMCID: PMC10977443 DOI: 10.3233/cbm-220348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Abelson interactor 1 (ABI1) is associated with the metastasis and prognosis of many malignancies. The association between ABI1 transcript spliced variants, their molecular constitutive exons and exon-exon junctions (EEJs) in 14 cancer types and clinical outcomes remains unsolved. OBJECTIVE To identify novel cancer metastatic and prognostic biomarkers from ABI1 total mRNA, TSVs, and molecular constitutive elements. METHODS Using data from TCGA and TSVdb database, the standard median of ABI1 total mRNA, TSV, exon, and EEJ expression was used as a cut-off value. Kaplan-Meier analysis, Chi-squared test (X2) and Kendall's tau statistic were used to identify novel metastatic and prognostic biomarkers, and Cox regression analysis was performed to screen and identify independent prognostic factors. RESULTS A total of 35 ABI1-related factors were found to be closely related to the prognosis of eight candidate cancer types. A total of 14 ABI1 TSVs and molecular constitutive elements were identified as novel metastatic and prognostic biomarkers in four cancer types. A total of 13 ABI1 molecular constitutive elements were identified as independent prognostic biomarkers in six cancer types. CONCLUSIONS In this study, we identified 14 ABI1-related novel metastatic and prognostic markers and 21 independent prognostic factors in total 8 candidate cancer types.
Collapse
Affiliation(s)
- Tingru Lin
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China
| | - Jingzhu Guo
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Yifan Peng
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- Gastrointestinal Cancer Center, Unit III, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Mei Li
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China
| | - Xin Yu
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
15
|
Yassi M, Chatterjee A, Parry M. Application of deep learning in cancer epigenetics through DNA methylation analysis. Brief Bioinform 2023; 24:bbad411. [PMID: 37985455 PMCID: PMC10661960 DOI: 10.1093/bib/bbad411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
DNA methylation is a fundamental epigenetic modification involved in various biological processes and diseases. Analysis of DNA methylation data at a genome-wide and high-throughput level can provide insights into diseases influenced by epigenetics, such as cancer. Recent technological advances have led to the development of high-throughput approaches, such as genome-scale profiling, that allow for computational analysis of epigenetics. Deep learning (DL) methods are essential in facilitating computational studies in epigenetics for DNA methylation analysis. In this systematic review, we assessed the various applications of DL applied to DNA methylation data or multi-omics data to discover cancer biomarkers, perform classification, imputation and survival analysis. The review first introduces state-of-the-art DL architectures and highlights their usefulness in addressing challenges related to cancer epigenetics. Finally, the review discusses potential limitations and future research directions in this field.
Collapse
Affiliation(s)
- Maryam Yassi
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Honorary Professor, UPES University, Dehradun, India
| | - Matthew Parry
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
- Te Pūnaha Matatini Centre of Research Excellence, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
He H, Li J, Wang W, Cheng J, Zhou J, Li Q, Jin J, Chen L. The SIRT7-mediated deacetylation of CHD1L amplifies HIF-2α-dependent signal that drives renal cell carcinoma progression and sunitinib resistance. Cell Biosci 2023; 13:166. [PMID: 37691108 PMCID: PMC10493023 DOI: 10.1186/s13578-023-01113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Aberrant interplay between epigenetic reprogramming and hypoxia signaling contributes to renal cell carcinoma progression and drug resistance, which is an essential hallmark. How the chromatin remodelers enhance RCC malignancy remains to be poorly understood. We aimed to elucidate the roles of CHD1L in determining hypoxia signaling activation and sunitinib resistance. METHODS The qRT-PCR, western blotting, and immunohistochemistry technologies were used to detect CHD1L expressions. Lentivirus transfection was used to generate stable CHD1L-KD cells. The roles of SIRT7/CHD1L were evaluated by CCK-8, wound healing, transwell assays, xenograft models, and tail-vein metastasis models. Co-immunoprecipitation, Chromatin Immunoprecipitation (ChIP), and luciferase reporter assays were conducted to explore epigenetic regulations. RESULTS We screened and validated that CHD1L is up-regulated in RCC and correlates with poorer prognosis of patients. CHD1L overexpression notably enhances cell proliferation, migration, and self-renewal capacities in vitro and in vivo. Mechanistically, SIRT7 physically interacts with CHDL1 and mediates the deacetylation of CHD1L. Wild-type SIRT7, but not H187Y dead mutant, stabilizes CHD1L protein levels via attenuating its ubiquitination levels. SIRT7 is increased in RCC and correlates with hazardous RCC clinical characteristics. SIRT7 depends on CHD1L to exert its tumor-promoting functions. Accumulated CHD1L amplifies HIF-2α-driven transcriptional programs via interacting with HIF-2α. CHD1L recruits BRD4 and increases the RNA polymerase II S2P loading. CHD1L ablation notably abolishes HIF-2α binding and subsequent transcriptional activation. CHD1L overexpression mediates the sunitinib resistance via sustaining VEGFA and targeting CHD1L reverses this effect. Specific CHD1L inhibitor (CHD1Li) shows a synergistic effect with sunitinib and strengthens its pharmaceutical effect. CONCLUSIONS These results uncover a CHD1L-mediated epigenetic mechanism of HIF-2α activation and downstream sunitinib resistance. The SIRT7-CHD1L-HIF-2α axis is highlighted to predict RCC prognosis and endows potential targets.
Collapse
Affiliation(s)
- Hongchao He
- Department of Urology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jie Li
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Wei Wang
- Department of Clinical Laboratory, Lianshui County People's Hospital, Huai'an, 223400, China
| | - Jie Cheng
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Xuhui Central Hospital, Shanghai, 200031, China
| | - Jian Zhou
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Xuhui Central Hospital, Shanghai, 200031, China
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, China.
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
17
|
Zhang X, Barnett E, Smith J, Wilkinson E, Subramaniam RM, Zarrabi A, Rodger EJ, Chatterjee A. Genetic and epigenetic features of neuroendocrine prostate cancer and their emerging applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:41-66. [PMID: 38359970 DOI: 10.1016/bs.ircmb.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Prostate cancer is the second most prevalent cancer in men globally. De novo neuroendocrine prostate cancer (NEPC) is uncommon at initial diagnosis, however, (treatment-induced) t-NEPC emerges in up to 25% of prostate adenocarcinoma (PRAD) cases treated with androgen deprivation, carrying a drastically poor prognosis. The transition from PRAD to t-NEPC is underpinned by several key genetic mutations; TP53, RB1, and MYCN are the main genes implicated, bearing similarities to other neuroendocrine tumours. A broad range of epigenetic alterations, such as aberrations in DNA methylation, histone post-translational modifications, and non-coding RNAs, may drive lineage plasticity from PRAD to t-NEPC. The clinical diagnosis of NEPC is hampered by a lack of accessible biomarkers; recent advances in liquid biopsy techniques assessing circulating tumour cells and ctDNA in NEPC suggest that the advent of non-invasive means of monitoring progression to NEPC is on the horizon. Such techniques are vital for NEPC management; diagnosis of t-NEPC is crucial for implementing effective treatment, and precision medicine will be integral to providing the best outcomes for patients.
Collapse
Affiliation(s)
- Xintong Zhang
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Te Whatu Ora/Health New Zealand, Wellington, New Zealand
| | - Emma Wilkinson
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Faculty of Medicine, Nursing, Midwifery and Health Sciences, The University of Notre Dame Australia, Fremantle, WA, Australia; Department of Radiology, Duke University, Durham, NC, United States
| | - Amir Zarrabi
- Te Whatu Ora/Health New Zealand, Wellington, New Zealand; Precision Urology, Dunedin, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Honorary Professor, School of Health Sciences and Technology, UPES University, Dehradun, India.
| |
Collapse
|
18
|
Rodger EJ, Gimenez G, Ajithkumar P, Stockwell PA, Almomani S, Bowden SA, Leichter AL, Ahn A, Pattison S, McCall JL, Schmeier S, Frizelle FA, Eccles MR, Purcell RV, Chatterjee A. An epigenetic signature of advanced colorectal cancer metastasis. iScience 2023; 26:106986. [PMID: 37378317 PMCID: PMC10291510 DOI: 10.1016/j.isci.2023.106986] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of morbidity and mortality worldwide. The majority of CRC deaths are caused by tumor metastasis, even following treatment. There is strong evidence for epigenetic changes, such as DNA methylation, accompanying CRC metastasis and poorer patient survival. Earlier detection and a better understanding of molecular drivers for CRC metastasis are of critical clinical importance. Here, we identify a signature of advanced CRC metastasis by performing whole genome-scale DNA methylation and full transcriptome analyses of paired primary cancers and liver metastases from CRC patients. We observed striking methylation differences between primary and metastatic pairs. A subset of loci showed coordinated methylation-expression changes, suggesting these are potentially epigenetic drivers that control the expression of critical genes in the metastatic cascade. The identification of CRC epigenomic markers of metastasis has the potential to enable better outcome prediction and lead to the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Peter A. Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Suzan Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sarah A. Bowden
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Anna L. Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Antonio Ahn
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Sharon Pattison
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - John L. McCall
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Frank A. Frizelle
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rachel V. Purcell
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Honorary Professor, School of Health Sciences and Technology, UPES University, India
| |
Collapse
|
19
|
Bararia A, Chakraborty P, Roy P, Chattopadhay BK, Das A, Chatterjee A, Sikdar N. Emerging role of non-invasive and liquid biopsy biomarkers in pancreatic cancer. World J Gastroenterol 2023; 29:2241-2260. [PMID: 37124888 PMCID: PMC10134423 DOI: 10.3748/wjg.v29.i15.2241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
A global increase in the incidence of pancreatic cancer (PanCa) presents a major concern and health burden. The traditional tissue-based diagnostic techniques provided a major way forward for molecular diagnostics; however, they face limitations based on diagnosis-associated difficulties and concerns surrounding tissue availability in the clinical setting. Late disease development with asymptomatic behavior is a drawback in the case of existing diagnostic procedures. The capability of cell free markers in discriminating PanCa from autoimmune pancreatitis and chronic pancreatitis along with other precancerous lesions can be a boon to clinicians. Early-stage diagnosis of PanCa can be achieved only if these biomarkers specifically discriminate the non-carcinogenic disease stage from malignancy with respect to tumor stages. In this review, we comprehensively described the non-invasive disease detection approaches and why these approaches are gaining popularity for their early-stage diagnostic capability and associated clinical feasibility.
Collapse
Affiliation(s)
- Akash Bararia
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Prosenjeet Chakraborty
- Department of Molecular Biosciences, SVYASA School of Yoga and Naturopathy, Bangalore 560105, India
| | - Paromita Roy
- Department of Pathology, Tata Medical Center, Kolkata 700160, India
| | | | - Amlan Das
- Department of Biochemistry, Royal Global University, Assam 781035, India
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9061, New Zealand
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
20
|
O'Neill H, Lee H, Gupta I, Rodger EJ, Chatterjee A. Single-Cell DNA Methylation Analysis in Cancer. Cancers (Basel) 2022; 14:6171. [PMID: 36551655 PMCID: PMC9777108 DOI: 10.3390/cancers14246171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Morphological, transcriptomic, and genomic defects are well-explored parameters of cancer biology. In more recent years, the impact of epigenetic influences, such as DNA methylation, is becoming more appreciated. Aberrant DNA methylation has been implicated in many types of cancers, influencing cell type, state, transcriptional regulation, and genomic stability to name a few. Traditionally, large populations of cells from the tissue of interest are coalesced for analysis, producing averaged methylome data. Considering the inherent heterogeneity of cancer, analysing populations of cells as a whole denies the ability to discover novel aberrant methylation patterns, identify subpopulations, and trace cell lineages. Due to recent advancements in technology, it is now possible to obtain methylome data from single cells. This has both research and clinical implications, ranging from the identification of biomarkers to improved diagnostic tools. As with all emerging technologies, distinct experimental, bioinformatic, and practical challenges present themselves. This review begins with exploring the potential impact of single-cell sequencing on understanding cancer biology and how it could eventually benefit a clinical setting. Following this, the techniques and experimental approaches which made this technology possible are explored. Finally, the present challenges currently associated with single-cell DNA methylation sequencing are described.
Collapse
Affiliation(s)
- Hannah O'Neill
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Heather Lee
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Dehradun 248007, India
| |
Collapse
|
21
|
Lavia P, Sciamanna I, Spadafora C. An Epigenetic LINE-1-Based Mechanism in Cancer. Int J Mol Sci 2022; 23:14610. [PMID: 36498938 PMCID: PMC9738484 DOI: 10.3390/ijms232314610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
In the last fifty years, large efforts have been deployed in basic research, clinical oncology, and clinical trials, yielding an enormous amount of information regarding the molecular mechanisms of cancer and the design of effective therapies. The knowledge that has accumulated underpins the complexity, multifactoriality, and heterogeneity of cancer, disclosing novel landscapes in cancer biology with a key role of genome plasticity. Here, we propose that cancer onset and progression are determined by a stress-responsive epigenetic mechanism, resulting from the convergence of upregulation of LINE-1 (long interspersed nuclear element 1), the largest family of human retrotransposons, genome damage, nuclear lamina fragmentation, chromatin remodeling, genome reprogramming, and autophagy activation. The upregulated expression of LINE-1 retrotransposons and their protein products plays a key role in these processes, yielding an increased plasticity of the nuclear architecture with the ensuing reprogramming of global gene expression, including the reactivation of embryonic transcription profiles. Cancer phenotypes would thus emerge as a consequence of the unscheduled reactivation of embryonic gene expression patterns in an inappropriate context, triggering de-differentiation and aberrant proliferation in differentiated cells. Depending on the intensity of the stressing stimuli and the level of LINE-1 response, diverse degrees of malignity would be generated.
Collapse
Affiliation(s)
- Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Ilaria Sciamanna
- Center for Animal Research and Welfare (BENA), ISS Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Corrado Spadafora
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133 Rome, Italy
| |
Collapse
|
22
|
Niu Y, Yang W, Qian H, Sun Y. Intracellular and extracellular factors of colorectal cancer liver metastasis: a pivotal perplex to be fully elucidated. Cancer Cell Int 2022; 22:341. [DOI: 10.1186/s12935-022-02766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMetastasis is the leading cause of death in colorectal cancer (CRC) patients, and the liver is the most common site of metastasis. Tumor cell metastasis can be thought of as an invasion-metastasis cascade and metastatic organotropism is thought to be a process that relies on the intrinsic properties of tumor cells and their interactions with molecules and cells in the microenvironment. Many studies have provided new insights into the molecular mechanism and contributing factors involved in CRC liver metastasis for a better understanding of the organ-specific metastasis process. The purpose of this review is to summarize the theories that explain CRC liver metastasis at multiple molecular dimensions (including genetic and non-genetic factors), as well as the main factors that cause CRC liver metastasis. Many findings suggest that metastasis may occur earlier than expected and with specific organ-anchoring property. The emergence of potential metastatic clones, the timing of dissemination, and the distinct routes of metastasis have been explained by genomic studies. The main force of CRC liver metastasis is also thought to be epigenetic alterations and dynamic phenotypic traits. Furthermore, we review key extrinsic factors that influence CRC cell metastasis and liver tropisms, such as pre-niches, tumor stromal cells, adhesion molecules, and immune/inflammatory responses in the tumor microenvironment. In addition, biomarkers associated with early diagnosis, prognosis, and recurrence of liver metastasis from CRC are summarized to enlighten potential clinical practice, including some markers that can be used as therapeutic targets to provide new perspectives for the treatment strategies of CRC liver metastasis.
Collapse
|
23
|
Chatterjee A, Kulshreshtha R. Editorial: Role of epigenetic regulators in the initiation, progression, and metastasis of cancer. Front Genet 2022; 13:978097. [PMID: 36406114 PMCID: PMC9667035 DOI: 10.3389/fgene.2022.978097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- School of Health Science and Technology, UPES University, Dehradun, India
- *Correspondence: Aniruddha Chatterjee, ; Ritu Kulshreshtha, ,
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- *Correspondence: Aniruddha Chatterjee, ; Ritu Kulshreshtha, ,
| |
Collapse
|
24
|
Xiong K, Qi M, Stoeger T, Zhang J, Chen S. The role of tumor-associated macrophages and soluble mediators in pulmonary metastatic melanoma. Front Immunol 2022; 13:1000927. [PMID: 36131942 PMCID: PMC9483911 DOI: 10.3389/fimmu.2022.1000927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Skin malignant melanoma is a highly aggressive skin tumor, which is also a major cause of skin cancer-related mortality. It can spread from a relatively small primary tumor and metastasize to multiple locations, including lymph nodes, lungs, liver, bone, and brain. What’s more metastatic melanoma is the main cause of its high mortality. Among all organs, the lung is one of the most common distant metastatic sites of melanoma, and the mortality rate of melanoma lung metastasis is also very high. Elucidating the mechanisms involved in the pulmonary metastasis of cutaneous melanoma will not only help to provide possible explanations for its etiology and progression but may also help to provide potential new therapeutic targets for its treatment. Increasing evidence suggests that tumor-associated macrophages (TAMs) play an important regulatory role in the migration and metastasis of various malignant tumors. Tumor-targeted therapy, targeting tumor-associated macrophages is thus attracting attention, particularly for advanced tumors and metastatic tumors. However, the relevant role of tumor-associated macrophages in cutaneous melanoma lung metastasis is still unclear. This review will present an overview of the origin, classification, polarization, recruitment, regulation and targeting treatment of tumor-associated macrophages, as well as the soluble mediators involved in these processes and a summary of their possible role in lung metastasis from cutaneous malignant melanoma. This review particularly aims to provide insight into mechanisms and potential therapeutic targets to readers, interested in pulmonary metastasis melanoma.
Collapse
Affiliation(s)
- Kaifen Xiong
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People’s Hospital (The Second Clinical Medical College), Jinan University, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jianglin Zhang
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, China
- *Correspondence: Jianglin Zhang, ; Shanze Chen,
| | - Shanze Chen
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People’s Hospital (The Second Clinical Medical College), Jinan University, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Jianglin Zhang, ; Shanze Chen,
| |
Collapse
|
25
|
Wang Z, Yang C. Epigenetic and epitranscriptomic mechanisms of chromium carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:241-265. [PMID: 36858774 PMCID: PMC10565670 DOI: 10.1016/bs.apha.2022.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hexavalent chromium [Cr(VI)], a Group I carcinogen classified by the International Agency for Research on Cancer (IARC), represents one of the most common occupational and environmental pollutants. The findings from human epidemiological and laboratory animal studies show that long-term exposure to Cr(VI) causes lung cancer and other cancer. Although Cr(VI) is a well-recognized carcinogen, the mechanism of Cr(VI) carcinogenesis has not been well understood. Due to the fact that Cr(VI) undergoes a series of metabolic reductions once entering cells to generate reactive Cr metabolites and reactive oxygen species (ROS) causing genotoxicity, Cr(VI) is generally considered as a genotoxic carcinogen. However, more and more studies have demonstrated that acute or chronic Cr(VI) exposure also causes epigenetic dysregulations including changing DNA methylation, histone posttranslational modifications and regulatory non-coding RNA (microRNA and long non-coding RNA) expressions. Moreover, emerging evidence shows that Cr(VI) exposure is also capable of altering cellular epitranscriptome. Given the increasingly recognized importance of epigenetic and epitranscriptomic dysregulations in cancer initiation and progression, it is believed that Cr(VI) exposure-caused epigenetic and epitranscriptomic changes could play important roles in Cr(VI) carcinogenesis. The goal of this chapter is to review the epigenetic and epitranscriptomic effects of Cr(VI) exposure and discuss their roles in Cr(VI) carcinogenesis. Better understanding the mechanism of Cr(VI) carcinogenesis may identify new molecular targets for more efficient prevention and treatment of cancer resulting from Cr(VI) exposure.
Collapse
Affiliation(s)
- Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Chengfeng Yang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|