1
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [DOI: https:/doi.org/10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Affiliation(s)
- Abolfazl Soulat
- Department of Atomic and Molecular Physics, Faculty of Sciences
- University of Mazandaran
| | - Taghi Mohsenpour
- Department of Atomic and Molecular Physics, Faculty of Sciences
- University of Mazandaran
| | - Leila Roshangar
- Department of Histology, Faculty of Medicine
- Tabriz University of Medical Sciences
| | | | - Fatemeh Soulat
- Applied Chemistry laboratory, Department of Chemistry, Faculty of Basic Science
- Azarbaijan Shahid Madani University (ASMU)
| |
Collapse
|
2
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [PMID: 40191350 PMCID: PMC11966581 DOI: 10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
Transitional cold atmospheric plasma (TCAP) represents a novel technique for generating plasma remotely from a primary source. It consists of a partially nonthermal ionized gas mixture containing charged and neutral particles, photons, and free radicals. In recent years, TCAP has attracted considerable attention in biomedical applications. In order to evaluate colon cancer stem cells' (CCSCs) proliferation, apoptotic induction, inflammatory response, and survival, TCAP was utilized both directly and indirectly in this study. Using argon and helium gases, TCAP was continuously delivered in two stages during the experiment. For direct state, TCAP was irradiated onto CCSCs for 3 and 5 min. In the indirect technique, Matrigel was treated with TCAP for 5 min before the introduction of cells. In vitro assays demonstrated that TCAP exposure significantly reduced the viability of CCSCs; helium gas and direct application had greater impacts than argon. Numerous investigations confirmed the induction of apoptosis, showing that the treated groups had more apoptotic cells and altered cellular structures than controls (****p < 0.0001). A substantial increase in the Bax/Bcl-2 ratio was found by analyzing the expression of the Bax and Bcl-2 genes, indicating increased susceptibility to apoptosis (*p = 0.0177 and ***p = 0.0004). The higher efficacy of the direct helium mode was further highlighted by inflammatory marker analysis, which showed a significant reduction in interleukin-6 and interleukin-8 expression in cells directly treated with TCAP-helium compared to TCAP-argon (**p = 0.0015 and ***p = 0.0007). Lastly, the proliferation test, which relies on K i-67 expression, demonstrated a noteworthy decline in all TCAP-treated groups, with the direct helium group exhibiting the most robust impact (**p = 0.0014). Overall, the findings highlight the potential of TCAP, particularly with helium, as a promising approach for selectively targeting CCSCs and providing insights into its therapeutic mechanisms for cancer treatment. TCAP, therefore, emerges as a unique therapeutic strategy with potential applications in cancer stem cell-targeted therapies.
Collapse
Affiliation(s)
- Abolfazl Soulat
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Taghi Mohsenpour
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Leila Roshangar
- Department
of Histology, Faculty of Medicine, Tabriz
University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Seyyed Yaghoub Moaddab
- Liver
and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Fatemeh Soulat
- Applied
Chemistry laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), 5375171379 Tabriz, Iran
| |
Collapse
|
3
|
Zhang Z, Tang R, Zhu M, Zhu Z, Zhu J, Li H, Tong M, Li N, Huang J. Deciphering cell states and the cellular ecosystem to improve risk stratification in acute myeloid leukemia. Brief Bioinform 2024; 26:bbaf028. [PMID: 39865982 PMCID: PMC11770069 DOI: 10.1093/bib/bbaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/17/2024] [Accepted: 01/11/2025] [Indexed: 01/28/2025] Open
Abstract
Acute myeloid leukemia (AML) demonstrates significant cellular heterogeneity in both leukemic and immune cells, providing valuable insights into clinical outcomes. Here, we constructed an AML single-cell transcriptome atlas and proposed sciNMF workflow to systematically dissect underlying cellular heterogeneity. Notably, sciNMF identified 26 leukemic and immune cell states that linked to clinical variables, mutations, and prognosis. By examining the co-existence patterns among these cell states, we highlighted a unique AML cellular ecosystem (ACE) that signifies aberrant tumor milieu and poor survival, which is confirmed by public RNA-seq cohorts. We further developed the ACE signature (ACEsig), comprising 12 genes, which accurately predicts AML prognosis, and outperforms existing signatures. When applied to cytogenetically normal AML or intensively treated patients, the ACEsig continues to demonstrate strong performance. Our results demonstrate that large-scale systematic characterization of cellular heterogeneity has the potential to enhance our understanding of AML heterogeneity and contribute to more precise risk stratification strategy.
Collapse
Affiliation(s)
- Zheyang Zhang
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
- National Institute for Data Science in Health and Medicine, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ronghan Tang
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ming Zhu
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Zhijuan Zhu
- Hematopoietic Stem Cell Transplantation Center, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Gulou District, Fuzhou 350001, China
| | - Jiali Zhu
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Hua Li
- Hematopoietic Stem Cell Transplantation Center, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Gulou District, Fuzhou 350001, China
- Department of Hematology and Rheumatology, The Second Affiliated Hospital of Xiamen Medical College, No. 566 Shengguang Road, Jimei District, Xiamen 361021, China
| | - Mengsha Tong
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
- National Institute for Data Science in Health and Medicine, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Nainong Li
- Hematopoietic Stem Cell Transplantation Center, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Gulou District, Fuzhou 350001, China
- Translational Medicine Center on Hematology, Fujian Medical University, No. 29 Xinquan Street, Gulou District, Fuzhou 350001, China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
- National Institute for Data Science in Health and Medicine, Xiamen University, No. 4221, Xiang’an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
4
|
Soulat A, Mohsenpour T, Roshangar L, Naghshara H. A Two-Stage Transferred Cold Atmospheric Plasma as a Unique Therapeutic Strategy for Targeting Colon Cancer Stem Cells. Adv Pharm Bull 2024; 14:400-411. [PMID: 39206394 PMCID: PMC11347729 DOI: 10.34172/apb.2024.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 09/04/2024] Open
Abstract
The study examines the induction of apoptosis in colon cancer stem cells (CCSCs) within a 3D culture setting, employing an innovative cold atmospheric plasma (CAP) transmission method known as two-stage transferred cold atmospheric plasma (TS-TCAP). TS-TCAP is a partially or fully ionized non-thermal gaseous mixture that comprises photons, charged and neutral particles, and free radicals, which has gained traction in biomedical applications such as cancer therapy. TS-TCAP impacts CCSCs via a continuous, two-step transport process, facilitating the efficient delivery of reactive oxygen and nitrogen species (RONS). The key cellular factors of CCSCs impacted by TS-TCAP treatment, encompassing the secretion and expression levels of IL-6 and IL-8, apoptotic cell count, and expression of BAX, BCL-2, and KI-67 proteins, were evaluated using qrt-ELISA, Annexin V, and qrt-PCR procedures, respectively. The outcomes of CCSCs treatment with TS-TCAP reveal a notable rise in the number of apoptotic cells (P<0.0001), diminished secretion, and gene expression of IL-6 and IL-8 (P<0.0001), accompanied by favorable alterations in BCL-2 and BAX gene expression (P<0.0001). Additionally, a notable decrease in KI-67 expression was observed, correlating with a reduction in CCSCs proliferation (P<0.0001). As well, this study underscores the anti-cancer potential of TS-TCAP, showcasing its efficacy in reducing CCSCs survival rates. However, further pre-clinical and clinical trials are necessary to evaluate CAP's efficacy, safety, and potential synergistic effects with other therapies thoroughly. Overall, TS-TCAP presents a promising alternative for CCSCs treatment, pending further investigation and refinement.
Collapse
Affiliation(s)
- Abolfazl Soulat
- Department of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 47416-13534, Babolsar, Iran
| | - Taghi Mohsenpour
- Department of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 47416-13534, Babolsar, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5166614766, Tabriz, Iran
| | - Hamid Naghshara
- Faculty of Physics, University of Tabriz, 5166616471, Tabriz, Iran
| |
Collapse
|