1
|
Jiang H, Ye J. The Warburg effect: The hacked mitochondrial-nuclear communication in cancer. Semin Cancer Biol 2025; 112:93-111. [PMID: 40147702 DOI: 10.1016/j.semcancer.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Mitochondrial-nuclear communication is vital for maintaining cellular homeostasis. This communication begins with mitochondria sensing environmental cues and transmitting signals to the nucleus through the retrograde cascade, involving metabolic signals such as substrates for epigenetic modifications, ATP and AMP levels, calcium flux, etc. These signals inform the nucleus about the cell's metabolic state, remodel epigenome and regulate gene expression, and modulate mitochondrial function and dynamics through the anterograde feedback cascade to control cell fate and physiology. Disruption of this communication can lead to cellular dysfunction and disease progression, particularly in cancer. The Warburg effect is the metabolic hallmark of cancer, characterized by disruption of mitochondrial respiration and increased lactate generation from glycolysis. This metabolic reprogramming rewires retrograde signaling, leading to epigenetic changes and dedifferentiation, further reprogramming mitochondrial function and promoting carcinogenesis. Understanding these processes and their link to tumorigenesis is crucial for uncovering tumorigenesis mechanisms. Therapeutic strategies targeting these disrupted pathways, including metabolic and epigenetic components, provide promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Zhang J, Ali MY, Chong HB, Tien PC, Woods J, Noble C, Vornbäumen T, Ordulu Z, Possemato AP, Harry S, Fonticella JM, Fellah L, Harrison D, Ge M, Khandelwal N, Huang Y, Chauvin M, Bischof AT, Hambelton GM, Gohar MF, Zhang S, Choi M, Bouberhan S, Oliva E, Mino-Kenudson M, Pavlova NN, Lawrence M, Gainor JF, Beausoleil SA, Bardeesy N, Mostoslavsky R, Pépin D, Ott CJ, Liau B, Bar-Peled L. Oxidation of retromer complex controls mitochondrial translation. Nature 2025; 641:1048-1058. [PMID: 40140582 DOI: 10.1038/s41586-025-08756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
Reactive oxygen species (ROS) underlie human pathologies including cancer and neurodegeneration1,2. However, the proteins that sense ROS levels and regulate their production through their cysteine residues remain ill defined. Here, using systematic base-editing and computational screens, we identify cysteines in VPS35, a member of the retromer trafficking complex3, that phenocopy inhibition of mitochondrial translation when mutated. We find that VPS35 underlies a reactive metabolite-sensing pathway that lowers mitochondrial translation to decrease ROS levels. Intracellular hydrogen peroxide oxidizes cysteine residues in VPS35, resulting in retromer dissociation from endosomal membranes and subsequent plasma membrane remodelling. We demonstrate that plasma membrane localization of the retromer substrate SLC7A1 is required to sustain mitochondrial translation. Furthermore, decreasing VPS35 levels or oxidation of its ROS-sensing cysteines confers resistance to ROS-generating chemotherapies, including cisplatin, in ovarian cancer models. Thus, we identify that intracellular ROS levels are communicated to the plasma membrane through VPS35 to regulate mitochondrial translation, connecting cytosolic ROS sensing to mitochondrial ROS production.
Collapse
Affiliation(s)
- Junbing Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA.
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Md Yousuf Ali
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Harrison Byron Chong
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Pei-Chieh Tien
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - James Woods
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Carolina Noble
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Tristan Vornbäumen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Zehra Ordulu
- Brigham and Women's Hospital, Department of Pathology, Harvard Medical School, MA, USA
| | | | - Stefan Harry
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Jay Miguel Fonticella
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Lina Fellah
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Drew Harrison
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Neha Khandelwal
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Yingfei Huang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Maëva Chauvin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Anica Tamara Bischof
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | | | - Magdy Farag Gohar
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Siwen Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - MinGyu Choi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sara Bouberhan
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Esther Oliva
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Natalya N Pavlova
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael Lawrence
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Justin F Gainor
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Raul Mostoslavsky
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David Pépin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher J Ott
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brian Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA.
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Foster CA, Sneddon D, Hacker L, Sarson ET, Robertson M, Sokolova D, Martin LAW, Allen MF, Khrapichev A, Vincent KA, Hammond EM, Conway SJ, Faulkner S. LnDOTA Releasing Probes for Luminescence and Magnetic Resonance Imaging. Inorg Chem 2025; 64:6640-6647. [PMID: 40127114 PMCID: PMC11979886 DOI: 10.1021/acs.inorgchem.5c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025]
Abstract
Lanthanide complexes of DOTA monoesters bearing nitrobenzyl and nitroimidazole groups are shown to be converted to the corresponding DOTA complexes under chemical and enzymatic conditions, giving rise to favorable changes in the luminescence properties of the europium and terbium complexes and relaxometric properties of the gadolinium complexes. The nitroimidazole complexes are converted more rapidly than their nitrobenzyl and benzyl analogues. We propose that activation of these complexes may occur by ester cleavage rather than nitro reduction and fragmentation since complexes bearing a simple benzyl group may also be cleaved under the same conditions, albeit more slowly.
Collapse
Affiliation(s)
- Ceri A. Foster
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Deborah Sneddon
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
| | - Lina Hacker
- Department
of Oncology, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, Oxford OX3 7DA, United Kingdom
| | - Euan T. Sarson
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Max Robertson
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Daria Sokolova
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Louise A. W. Martin
- Department
of Oncology, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, Oxford OX3 7DA, United Kingdom
| | - Matthew F. Allen
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Alexandr Khrapichev
- Department
of Oncology, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, Oxford OX3 7DA, United Kingdom
| | - Kylie A. Vincent
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ester M. Hammond
- Department
of Oncology, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, Oxford OX3 7DA, United Kingdom
| | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United Kingdom
| | - Stephen Faulkner
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
4
|
Jiang J, Zheng H, Wang Z, Wang X, Xie Q, Liu X, Yang Q, Cai X, Gao X, Li R, Chen C. Intracellular dehydrogenation catalysis leads to reductive stress and immunosuppression. NATURE NANOTECHNOLOGY 2025; 20:554-562. [PMID: 39979398 DOI: 10.1038/s41565-025-01870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/17/2025] [Indexed: 02/22/2025]
Abstract
Imbalanced redox homeostasis, involving either oxidative stress or reductive stress, can profoundly impact cellular functions, contributing to various diseases. While the implications of oxidative stress in the adverse effects of nanoparticles have been extensively studied, our comprehension of reductive stress within the context of nano-redox system interactions remains limited. Here we illuminate a domino effect initiated by the dehydrogenase-like activity of transition metal borides. Specifically, seven transition metal borides were identified to emulate the enzymatic activity of natural dehydrogenases, resulting in heightened levels of reductive constituents within critical biological redox pairs in cells. Mass cytometry analysis provides compelling evidence that reductive stress initiates an immunosuppressive environment within lung tissues, promoting the metastasis of breast cancer cells to the lungs. In summary, our study unveils the chemical basis of nano-induced reductive stress and establishes a mechanistic axis that interlinks dehydrogenase-like activity, reductive stress, immunosuppression and tumour metastasis.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, China
| | - Zhenzhen Wang
- New Cornerstone Science Laboratory, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xinlian Wang
- New Cornerstone Science Laboratory, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, China
| | - Qing Yang
- School of Public Health, Soochow University, Suzhou, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, China
| | - Xingfa Gao
- New Cornerstone Science Laboratory, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, China.
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
| | - Chunying Chen
- New Cornerstone Science Laboratory, Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China.
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Pan X, Cracan V. Translocation renal cell carcinoma says no to the Warburg effect. Nat Metab 2025; 7:438-440. [PMID: 39915637 PMCID: PMC11949694 DOI: 10.1038/s42255-025-01216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
A new study reveals that in drastic contrast to other cancer types, translocation renal cell carcinoma (tRCC) is transcriptionally rewired towards an oxidative phosphorylation (OXPHOS) state, which renders tRCC vulnerable to interventions that promote NADH-reductive stress, highlighting how the maintenance of the optimal redox state in cancer can be therapeutically exploited.
Collapse
Affiliation(s)
- Xingxiu Pan
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
| | - Valentin Cracan
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA.
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
6
|
Jiang J, Lu Y, Zheng X, Xie M, Jauković A, Gao M, Zheng H. Engineering probiotic biohydrogen micro-factories to initiate reductive stress for boosting tumor vulnerability. Biomaterials 2025; 314:122892. [PMID: 39426122 DOI: 10.1016/j.biomaterials.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Disruption of redox homeostasis profoundly affects cellular metabolism and activities. While oxidative stress is extensively studied in cancer therapies, research on reductive stress remains in its infancy. Molecular hydrogen (H2), a well-known antioxidant, holds significant potential to induce reductive stress due to its strong antioxidative properties, making it a promising candidate for cancer therapy. However, it remains a major challenge to develop a sustainable H2 delivery system in vivo. Herein, we designed a micro-factory by engineering a gel-based microcapsule that encapsulates Enterobacter aerogenes, a.k.a. probiotic biohydrogen microcapsules (PBMCs), enabling the sustained H2 generation within tumor microenvironment. Notably, PBMCs effectively suppressed the proliferation of eight tumor cell lines as well as drug-resistant cancer cells. The prolonged H2 release from PBMCs induced reductive stress, as evidenced by a significant increase in the GSH/GSSG ratio in 4T1 cells. Moreover, PBMCs displayed significant antitumor effects in breast, melanoma and liver cancer models. The inhibition of PI3K-AKT pathway and the activation of MAPK pathway were identified as key mechanisms responsible for inducing tumor cell cycle arrest and apoptosis. The PBMCs also exhibited synergistic effects in combination with chemotherapeutics, resulting in robust inhibitions of preinvasive carcinoma growth and commonly associated pulmonary metastasis. Overall, our study introduces an innovative strategy to manipulate reductive stress in the tumor microenvironment through in situ H2 generation, thereby enhancing tumor vulnerability.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuhao Lu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xinyi Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Maomao Xie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade, 11000, Serbia
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
7
|
Li J, Huang K, Thakur M, McBride F, Sadagopan A, Gallant DS, Khanna P, Laimon YN, Li B, Mohanna R, Ge M, Weiss CN, Achom M, Xu Q, Matar S, Lee GSM, Huang K, Gui M, Wu CL, Cornejo KM, Choueiri TK, Ryback BA, Signoretti S, Bar-Peled L, Viswanathan SR. Oncogenic TFE3 fusions drive OXPHOS and confer metabolic vulnerabilities in translocation renal cell carcinoma. Nat Metab 2025; 7:478-492. [PMID: 39915638 DOI: 10.1038/s42255-025-01218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/09/2025] [Indexed: 02/12/2025]
Abstract
Translocation renal cell carcinoma (tRCC) is an aggressive subtype of kidney cancer driven by TFE3 gene fusions, which act via poorly characterized downstream mechanisms. Here we report that TFE3 fusions transcriptionally rewire tRCCs toward oxidative phosphorylation (OXPHOS), contrasting with the highly glycolytic nature of most other renal cancers. Reliance on this TFE3 fusion-driven OXPHOS programme renders tRCCs vulnerable to NADH reductive stress, a metabolic stress induced by an imbalance of reducing equivalents. Genome-scale CRISPR screening identifies tRCC-selective vulnerabilities linked to this metabolic state, including EGLN1, which hydroxylates HIF-1α and targets it for proteolysis. Inhibition of EGLN1 compromises tRCC cell growth by stabilizing HIF-1α and promoting metabolic reprogramming away from OXPHOS, thus representing a vulnerability for OXPHOS-dependent tRCC cells. Our study defines tRCC as being dependent on a mitochondria-centred metabolic programme driven by TFE3 fusions and nominates EGLN1 inhibition as a therapeutic strategy in this cancer.
Collapse
Affiliation(s)
- Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kaimeng Huang
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Meha Thakur
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fiona McBride
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel S Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Prateek Khanna
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Bingchen Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Razan Mohanna
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Cary N Weiss
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sayed Matar
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Gwo-Shu Mary Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kun Huang
- Molecular Imaging Core and Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Miao Gui
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Kristine M Cornejo
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Birgitta A Ryback
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Liron Bar-Peled
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
8
|
Hu Y, Chen M, Sun S, Zhang C, Xin Z, Sun X, Wang K, Jin K, Du X, Xing B, Liu X. Long non-coding RNA LINC01532 sustains redox homeostasis and accelerates lenvatinib resistance in hepatocellular carcinoma. J Adv Res 2025:S2090-1232(25)00132-8. [PMID: 40023250 DOI: 10.1016/j.jare.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/26/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
INTRODUCTION Lenvatinib is the first-line therapy of hepatocellular carcinoma (HCC) and the high frequency of lenvatinib resistance hinders the improvement of HCC treatment. Since NADPH plays vital roles in antioxidant defense and reductive biosynthesis, cancer cells exert NADPH metabolic adaptation to support their malignant activities, including drug resistance. However, the underlying mechanisms need to be further studied. OBJECTIVES This study aims to delineate the latent mechanism by which HCC cells modulate NADPH metabolic adaptation and lenvatinib resistance. METHODS Using high-throughput screening, we screened LINC01532 as a critical regulator in NADPH metabolic adaptation. The function of LINC01532 in drug resistance of HCC cells was analyzed by in vitro and in vivo model. NADPH assay, malondialdehyde (MDA) assay, and glutathione (GSH) detection assay were carried out to explore the role of LINC01532 in NADPH metabolism. Furthermore, RNA-binding protein immunoprecipitation, RNA pull-down assay, co-immunoprecipitation, and chromatin immunoprecipitation experiments were utilized to uncover the underlying mechanisms. RESULTS High expression of LINC01532 predicted poorer prognosis in HCC patients. LINC01532 stimulated NADPH production and blunted lenvatinib-induced cell death, leading to drug resistance. Mechanistically, LINC01532 bound to hnRNPK and promoted CDK2-mediated phosphorylation of hnRNPK, which facilitated G6PD pre-mRNA splicing, resulting in high expression of G6PD and upregulated NADPH synthesis. The elevated NADPH cleared reactive oxygen species (ROS), supported biomass synthesis, and epigenetically modulated gene expression. Inhibition of LINC01532 significantly enhanced lenvatinib sensitivity of HCC cells. The m6A modification induced by mTORC1 promoted the expression of LINC01532 in HCC cells. CONCLUSION Collectively, our findings demonstrate that LINC01532 confers lenvatinib resistance of HCC cells by modulating NADPH metabolic adaptation. LINC01532 might be a prognostic or therapeutic target for HCC.
Collapse
Affiliation(s)
- Yang Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Muhua Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shiqi Sun
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zechang Xin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaoyan Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Kun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Kemin Jin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Baocai Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xiaofeng Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
9
|
Mladenov M, Sazdova I, Hadzi-Petrushev N, Konakchieva R, Gagov H. The Role of Reductive Stress in the Pathogenesis of Endocrine-Related Metabolic Diseases and Cancer. Int J Mol Sci 2025; 26:1910. [PMID: 40076537 PMCID: PMC11899626 DOI: 10.3390/ijms26051910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Reductive stress (RS), characterized by excessive accumulation of reducing equivalents such as NADH and NADPH, is emerging as a key factor in metabolic disorders and cancer. While oxidative stress (OS) has been widely studied, RS and its complex interplay with endocrine regulation remain less understood. This review explores molecular circuits of bidirectional crosstalk between metabolic hormones and RS, focusing on their role in diabetes, obesity, cardiovascular diseases, and cancer. RS disrupts insulin secretion and signaling, exacerbates metabolic inflammation, and contributes to adipose tissue dysfunction, ultimately promoting insulin resistance. In cardiovascular diseases, RS alters vascular smooth muscle cell function and myocardial metabolism, influencing ischemia-reperfusion injury outcomes. In cancer, RS plays a dual role: it enhances tumor survival by buffering OS and promoting metabolic reprogramming, yet excessive RS can trigger proteotoxicity and mitochondrial dysfunction, leading to apoptosis. Recent studies have identified RS-targeting strategies, including redox-modulating therapies, nanomedicine, and drug repurposing, offering potential for novel treatments. However, challenges remain, particularly in distinguishing physiological RS from pathological conditions and in overcoming therapy-induced resistance. Future research should focus on developing selective RS biomarkers, optimizing therapeutic interventions, and exploring the role of RS in immune and endocrine regulation.
Collapse
Affiliation(s)
- Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (M.M.); (N.H.-P.)
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (M.M.); (N.H.-P.)
| | - Rossitza Konakchieva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| |
Collapse
|
10
|
Zhang S, Wang N, Gao Z, Gao J, Wang X, Xie H, Wang CY, Zhang S. Reductive stress: The key pathway in metabolic disorders induced by overnutrition. J Adv Res 2025:S2090-1232(25)00031-1. [PMID: 39805424 DOI: 10.1016/j.jare.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/04/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The balance of redox states is crucial for maintaining physiological homeostasis. For decades, the focus has been mainly on the concept of oxidative stress, which is involved in the mechanism of almost all diseases. However, robust evidence has highlighted that reductive stress, the other side of the redox spectrum, plays a pivotal role in the development of various diseases, particularly those related to metabolism and cardiovascular health. AIM OF REVIEW In this review, we present an extensive array of evidence for the occurrence of reductive stress and its significant implications mainly in metabolic and cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Reductive stress is defined as a shift in the cellular redox balance towards a more reduced state, characterized by an excess of endogenous reductants (such as NADH, NADPH, and GSH) over their oxidized counterparts (NAD+, NADP+, and GSSG). While oxidative stress has been the predominant mechanism studied in obesity, metabolic disorders, and cardiovascular diseases, growing evidence underscores the critical role of reductive stress. This review discusses how reductive stress contributes to metabolic and cardiovascular pathologies, emphasizing its effects on key cellular processes. For example, excessive NADH accumulation can disrupt mitochondrial function by impairing the electron transport chain, leading to decreased ATP production and increased production of reactive oxygen species. In the endoplasmic reticulum (ER), an excess of reductive equivalents hampers protein folding, triggering ER stress and activating the unfolded protein response, which can lead to insulin resistance and compromised cellular homeostasis. Furthermore, we explore how excessive antioxidant supplementation can exacerbate reductive stress by further shifting the redox balance, potentially undermining the beneficial effects of exercise, impairing cardiovascular health, and aggravating metabolic disorders, particularly in obese individuals. This growing body of evidence calls for a reevaluation of the role of reductive stress in disease pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Shiyi Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichao Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Xie
- Institute of Translational Medicine, Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Nandha SR, Checker R, Patwardhan RS, Sharma D, Sandur SK. Anti-oxidants as therapeutic agents for oxidative stress associated pathologies: future challenges and opportunities. Free Radic Res 2025; 59:61-85. [PMID: 39764687 DOI: 10.1080/10715762.2025.2450504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects. However, these trials failed to establish anti-oxidants as therapeutic agents due to lack of efficacy. This is attributed to the fact that living systems are under dynamic redox control wherein their redox behavior is compartmentalized and simple aggregation of redox couples, distributed throughout the system, is of miniscule importance while determining their overall redox state. Further, free radical metabolism is intriguingly complex as they play plural roles segregated in a spatio-temporal manner. Depending on quality, quantity and site of generation, free radicals exhibit beneficial or harmful effects. Use of nonspecific, non-targeted, general ROS scavengers lead to systemic elimination of all types of ROS and interferes in cellular signaling. Failure of anti-oxidants to act as therapeutic agents lies in this oversimplification of extremely dynamic cellular redox environment as a static and non-compartmentalized redox state. Rather than generalizing the term "oxidative stress" if we can identify the "type of oxidative stress" in different types of diseases, a targeted and more specific anti-oxidant therapy may be developed. In this review, we discuss the concept of redox dynamics, role and type of oxidative stress in disease conditions, and current status of anti-oxidants as therapeutic agents. Further, we probe the possibility of developing novel, targeted and efficacious anti-oxidants with drug-like properties.
Collapse
Affiliation(s)
- Shivani R Nandha
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
12
|
McMinimy R, Manford AG, Gee CL, Chandrasekhar S, Mousa GA, Chuang J, Phu L, Shih KY, Rose CM, Kuriyan J, Bingol B, Rapé M. Reactive oxygen species control protein degradation at the mitochondrial import gate. Mol Cell 2024; 84:4612-4628.e13. [PMID: 39642856 DOI: 10.1016/j.molcel.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/02/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
While reactive oxygen species (ROS) have long been known to drive aging and neurodegeneration, their persistent depletion below basal levels also disrupts organismal function. Cells counteract loss of basal ROS via the reductive stress response, but the identity and biochemical activity of ROS sensed by this pathway remain unknown. Here, we show that the central enzyme of the reductive stress response, the E3 ligase Cullin 2-FEM1 homolog B (CUL2FEM1B), specifically acts at mitochondrial TOM complexes, where it senses ROS produced by complex III of the electron transport chain (ETC). ROS depletion during times of low ETC activity triggers the localized degradation of CUL2FEM1B substrates, which sustains mitochondrial import and ensures the biogenesis of the rate-limiting ETC complex IV. As complex III yields most ROS when the ETC outpaces metabolic demands or oxygen availability, basal ROS are sentinels of mitochondrial activity that help cells adjust their ETC to changing environments, as required for cell differentiation and survival.
Collapse
Affiliation(s)
- Rachael McMinimy
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andrew G Manford
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Srividya Chandrasekhar
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Gergey Alzaem Mousa
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Joelle Chuang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Lilian Phu
- Genentech Inc. South San Francisco, South San Francisco, CA 94080, USA
| | - Karen Y Shih
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | - John Kuriyan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Baris Bingol
- Genentech Inc. South San Francisco, South San Francisco, CA 94080, USA
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Luo M, Ma X, Ye J. Reductive stress-a common metabolic feature of obesity and cancer. Acta Pharm Sin B 2024; 14:5181-5185. [PMID: 39807313 PMCID: PMC11725146 DOI: 10.1016/j.apsb.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 01/16/2025] Open
Abstract
Reductive stress, characterized by rising level of NADH (nicotinamide adenine dinucleotide) for a status of NADH/NAD+ ratio elevation, has been reported in obesity and cancer. However, the mechanism and significance of reductive stress remain to be established in obesity. This perspective is prepared to address the issue with new insights published recently. NADH is used in production of NADPH, glutathione, ATP and heat in the classical biochemistry. In obesity, elevation of NADH/NAD+ ratio, likely from overproduction due to substrate overloading, has been found in the liver for insulin resistance and gluconeogenesis. New evidence demonstrates that the elevation may induce lipogenesis, purine biosynthesis and gluconeogenesis through activation of transcription factors of ChREBP and NRF2. In cancer cells, NADH/NAD+ elevation under the Warburg effect is primarily derived from decreased NADH consumption in the mitochondrial respiration. Alternatively, NRF2 overactivation from gene mutation represents another mechanism of NADH/NAD+ elevation from NADH production in the cancer cells. The elevation is required for quick proliferation of cancer cells through induction of biosynthesis of the essential molecules. It appears that the causes of reductive stress are different between obesity and cancer, while its impact in anabolism is similar in the two conditions.
Collapse
Affiliation(s)
- Man Luo
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
| | - Xiwen Ma
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou 450052, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou 450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Zhengzhou Key laboratory of Obesity Research, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
14
|
Ingersoll AJ, McCloud DM, Hu JY, Rape M. Dynamic regulation of the oxidative stress response by the E3 ligase TRIP12. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625235. [PMID: 39651249 PMCID: PMC11623662 DOI: 10.1101/2024.11.25.625235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The oxidative stress response is centered on the transcription factor NRF2 and protects cells from reactive oxygen species (ROS). While ROS inhibit the E3 ligase CUL3 KEAP1 to stabilize NRF2 and elicit antioxidant gene expression, cells recovering from stress must rapidly reactivate CUL3 KEAP1 to prevent reductive stress and oxeiptosis-dependent cell death. How cells restore efficient NRF2-degradation upon ROS clearance remains poorly understood. Here, we identify TRIP12, an E3 ligase dysregulated in Clark-Baraitser Syndrome and Parkinson's Disease, as a component of the oxidative stress response. TRIP12 is a ubiquitin chain elongation factor that cooperates with CUL3 KEAP1 to ensure robust NRF2 degradation. In this manner, TRIP12 accelerates stress response silencing as ROS are being cleared, but limits NRF2 activation during stress. The need for dynamic control of NRF2-degradation therefore comes at the cost of diminished stress signaling, suggesting that TRIP12 inhibition could be used to treat degenerative pathologies characterized by ROS accumulation.
Collapse
|
15
|
Li B, Sadagopan A, Li J, Wu Y, Cui Y, Konda P, Weiss CN, Choueiri TK, Doench JG, Viswanathan SR. A framework for target discovery in rare cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620074. [PMID: 39484513 PMCID: PMC11527139 DOI: 10.1101/2024.10.24.620074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
While large-scale functional genetic screens have uncovered numerous cancer dependencies, rare cancers are poorly represented in such efforts and the landscape of dependencies in many rare cancers remains obscure. We performed genome-scale CRISPR knockout screens in an exemplar rare cancer, TFE3-translocation renal cell carcinoma (tRCC), revealing previously unknown tRCC-selective dependencies in pathways related to mitochondrial biogenesis, oxidative metabolism, and kidney lineage specification. To generalize to other rare cancers in which experimental models may not be readily available, we employed machine learning to infer gene dependencies in a tumor or cell line based on its transcriptional profile. By applying dependency prediction to alveolar soft part sarcoma (ASPS), a distinct rare cancer also driven by TFE3 translocations, we discovered and validated that MCL1 represents a dependency in ASPS but not tRCC. Finally, we applied our model to predict gene dependencies in tumors from the TCGA (11,373 tumors; 28 lineages) and multiple additional rare cancers (958 tumors across 16 types, including 13 distinct subtypes of kidney cancer), nominating potentially actionable vulnerabilities in several poorly-characterized cancer types. Our results couple unbiased functional genetic screening with a predictive model to establish a landscape of candidate vulnerabilities across cancers, including several rare cancers currently lacking in potential targets.
Collapse
Affiliation(s)
- Bingchen Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Yuqianxun Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Yantong Cui
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Cary N. Weiss
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Toni K. Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School; Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02215, USA
| | - John G. Doench
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School; Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02215, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| |
Collapse
|
16
|
Kunwar A, Aishwarya J. "Reductive stress" the overlooked side of cellular redox modulation in cancer: opportunity for design of next generation redox chemotherapeutics. Free Radic Res 2024; 58:782-795. [PMID: 39604822 DOI: 10.1080/10715762.2024.2433988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The last three decades of redox biology research have been dominated by the term "oxidative stress" since it was first coined by Helmut Sies to represent a form of cellular redox modulation characterized by redox imbalance toward overproduction of oxidants. Almost every pathological condition, including cancer, has been linked with oxidative stress and so forth; targeting oxidative stress became the strategy for the new drug discovery with anticancer drugs aiming to selectively induce oxidative stress in cancerous cells while antioxidants aiming to prevent carcinogenesis as prophylactic agents. Time has now come to realize, how harmful the other side of the cellular redox spectrum, "reductive stress," characterized by redox imbalance toward the accumulation of reducing equivalents, maybe during carcinogenesis, and to tap its potential for the design of next-generation chemotherapeutic agents. Adjuvants-causing reductive stress may also work synergistically with radiation therapy under hypoxia to achieve better tumor control. Keeping this evolving field into account, the present review provides a current understating of the role of reductive stress in carcinogenesis, the status of reductive stress-based chemotherapeutic agents with particular emphasis on sulfhydryl and selenium-containing compounds and the gap areas that need to be addressed in future.
Collapse
Affiliation(s)
- Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - J Aishwarya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| |
Collapse
|
17
|
Jyothidasan A, Sunny S, Devarajan A, Sayed A, Afortude JK, Dalley B, Nanda V, Pogwizd S, Litovsky SH, Trinity JD, Might M, Rajasekaran NS. Exercise mitigates reductive stress-induced cardiac remodeling in mice. Redox Biol 2024; 75:103263. [PMID: 39053266 PMCID: PMC11327476 DOI: 10.1016/j.redox.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024] Open
Abstract
The endoplasmic reticulum (ER) regulates protein folding and maintains proteostasis in cells. We observed that the ER transcriptome is impaired during chronic reductive stress (RS) in cardiomyocytes. Here, we hypothesized that a prolonged moderate treadmill exercise mitigates the RS-induced ER dysfunction and cardiac remodeling in cardiac-specific constitutively active Nrf2 mice (CaNrf2-TG). RNA sequencing showed notable alterations in the ER transcriptome of TG hearts at 4, 12, and 24 weeks (16, 28, and 35 genes, respectively). Notably, the downregulation of ER genes was significant at 12 weeks, and further pronounced at 24 weeks, at which the cardiac pathology is evident. We also observed increased levels of ubiquitinated proteins in CaNrf2-TG hearts across all ages, along with VCP, a marker of ERAD function, at 24 weeks. These findings indicate that constitutive Nrf2 activation and RS impair protein-folding activity and augments ERAD function over time. Exercise intervention for 20 weeks (beginning at 6 weeks of age), reduced cardiomyocyte hypertrophy (from 448 μm2 to 280 μm2) in TG mice, through adaptive remodeling, and preserved the cardiac function. However, while exercise did not influence antioxidants or ER stress protein levels, it significantly improved ERAD function and autophagy flux (LC-I to LC-II) in the TG-EXE hearts. Collectively, our findings underscore the prophylactic potential of exercise in mitigating RS-associated pathology, highlighting its essential role in maintaining cellular proteostasis through ER-independent mechanisms.
Collapse
Affiliation(s)
- Arun Jyothidasan
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sini Sunny
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Asokan Devarajan
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Aniqa Sayed
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Kofi Afortude
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian Dalley
- Department of Medicine, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Vivek Nanda
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven Pogwizd
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Silvio H Litovsky
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joel D Trinity
- Department of Medicine, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Matthew Might
- Hugh Kaul Precision Medicine Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Medicine, University of Utah, School of Medicine, Salt Lake City, UT, USA; Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
18
|
Li J, Huang K, McBride F, Sadagopan A, Gallant DS, Thakur M, Khanna P, Li B, Ge M, Weiss CN, Achom M, Xu Q, Huang K, Ryback BA, Gui M, Bar-Peled L, Viswanathan SR. TFE3 fusions direct an oncogenic transcriptional program that drives OXPHOS and unveils vulnerabilities in translocation renal cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607311. [PMID: 39149323 PMCID: PMC11326252 DOI: 10.1101/2024.08.09.607311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Translocation renal cell carcinoma (tRCC) is an aggressive subtype of kidney cancer driven by TFE3 gene fusions, which act via poorly characterized downstream mechanisms. Here we report that TFE3 fusions transcriptionally rewire tRCCs toward oxidative phosphorylation (OXPHOS), contrasting with the highly glycolytic metabolism of most other renal cancers. This TFE3 fusion-driven OXPHOS program, together with heightened glutathione levels found in renal cancers, renders tRCCs sensitive to reductive stress - a metabolic stress state induced by an imbalance of reducing equivalents. Genome-scale CRISPR screening identifies tRCC-selective vulnerabilities linked to this metabolic state, including EGLN1, which hydroxylates HIF-1α and targets it for proteolysis. Inhibition of EGLN1 compromises tRCC cell growth by stabilizing HIF-1a and promoting metabolic reprogramming away from OXPHOS, thus representing a vulnerability to OXPHOS-dependent tRCC cells. Our study defines a distinctive tRCC-essential metabolic program driven by TFE3 fusions and nominates EGLN1 inhibition as a therapeutic strategy to counteract fusion-induced metabolic rewiring.
Collapse
Affiliation(s)
- Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Kaimeng Huang
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fiona McBride
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Daniel. S Gallant
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Meha Thakur
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Prateek Khanna
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Bingchen Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Cary N. Weiss
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingkee Achom
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
| | - Qingru Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
| | - Kun Huang
- Molecular Imaging Core and Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Birgitta A. Ryback
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Miao Gui
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China; Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Liron Bar-Peled
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA, USA
- Department of Medicine, Harvard Medical School; Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA, USA
| |
Collapse
|
19
|
Wu H, Fu M, Wu M, Cao Z, Zhang Q, Liu Z. Emerging mechanisms and promising approaches in pancreatic cancer metabolism. Cell Death Dis 2024; 15:553. [PMID: 39090116 PMCID: PMC11294586 DOI: 10.1038/s41419-024-06930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic cancer is an aggressive cancer with a poor prognosis. Metabolic abnormalities are one of the hallmarks of pancreatic cancer, and pancreatic cancer cells can adapt to biosynthesis, energy intake, and redox needs through metabolic reprogramming to tolerate nutrient deficiency and hypoxic microenvironments. Pancreatic cancer cells can use glucose, amino acids, and lipids as energy to maintain malignant growth. Moreover, they also metabolically interact with cells in the tumour microenvironment to change cell fate, promote tumour progression, and even affect immune responses. Importantly, metabolic changes at the body level deserve more attention. Basic research and clinical trials based on targeted metabolic therapy or in combination with other treatments are in full swing. A more comprehensive and in-depth understanding of the metabolic regulation of pancreatic cancer cells will not only enrich the understanding of the mechanisms of disease progression but also provide inspiration for new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hao Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengdi Fu
- Department of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiyao Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
20
|
Wei XW, Lu C, Zhang YC, Fan X, Xu CR, Chen ZH, Wang F, Yang XR, Deng JY, Yang MY, Gou Q, Mei SQ, Luo WC, Zhong RW, Zhong WZ, Yang JJ, Zhang XC, Tu HY, Wu YL, Zhou Q. Redox high phenotype mediated by KEAP1/STK11/SMARCA4/NRF2 mutations diminishes tissue-resident memory CD8+ T cells and attenuates the efficacy of immunotherapy in lung adenocarcinoma. Oncoimmunology 2024; 13:2340154. [PMID: 38601319 PMCID: PMC11005803 DOI: 10.1080/2162402x.2024.2340154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Metabolism reprogramming within the tumor microenvironment (TME) can have a profound impact on immune cells. Identifying the association between metabolic phenotypes and immune cells in lung adenocarcinoma (LUAD) may reveal mechanisms of resistance to immune checkpoint inhibitors (ICIs). Metabolic phenotypes were classified by expression of metabolic genes. Somatic mutations and transcriptomic features were compared across the different metabolic phenotypes. The metabolic phenotype of LUAD is predominantly determined by reductase-oxidative activity and is divided into two categories: redoxhigh LUAD and redoxlow LUAD. Genetically, redoxhigh LUAD is mainly driven by mutations in KEAP1, STK11, NRF2, or SMARCA4. These mutations are more prevalent in redoxhigh LUAD (72.5%) compared to redoxlow LUAD (17.4%), whereas EGFR mutations are more common in redoxlow LUAD (19.0% vs. 0.7%). Single-cell RNA profiling of pre-treatment and post-treatment samples from patients receiving neoadjuvant chemoimmunotherapy revealed that tissue-resident memory CD8+ T cells are responders to ICIs. However, these cells are significantly reduced in redoxhigh LUAD. The redoxhigh phenotype is primarily attributed to tumor cells and is positively associated with mTORC1 signaling. LUAD with the redoxhigh phenotype demonstrates a lower response rate (39.1% vs. 70.8%, p = 0.001), shorter progression-free survival (3.3 vs. 14.6 months, p = 0.004), and overall survival (12.1 vs. 31.2 months, p = 0.022) when treated with ICIs. The redoxhigh phenotype in LUAD is predominantly driven by mutations in KEAP1, STK11, NRF2, and SMARCA4. This phenotype diminishes the number of tissue-resident memory CD8+ T cells and attenuates the efficacy of ICIs.
Collapse
Affiliation(s)
- Xue-Wu Wei
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chang Lu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi-Chen Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xue Fan
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chong-Rui Xu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhi-Hong Chen
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Fen Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiao-Rong Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jia-Yi Deng
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ming-Yi Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Gou
- Department of Interventional Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shi-Qi Mei
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wei-Chi Luo
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ri-Wei Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Zhou
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Kargbo RB. Redefining Neurodegenerative Treatment: Synergy of KEAP1, PROTACs, and Inflammatory Modulators. ACS Med Chem Lett 2024; 15:167-168. [PMID: 38352846 PMCID: PMC10860189 DOI: 10.1021/acsmedchemlett.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Indexed: 02/16/2024] Open
Abstract
The KEAP1-NRF2 axis is pivotal in the cellular mechanism against oxidative and electrophilic stress. NRF2, under standard conditions, undergoes proteasomal degradation mediated by the E3 ubiquitin ligase KEAP1. Stress conditions lead to KEAP1 inactivation, facilitating NRF2 stability and subsequent activation of defensive genes. NRF2 signaling anomalies are associated with cancer progression and neurodegenerative diseases. Continuous activation of the NRF2 pathway aids in the survival of cancer cells, while a deficiency in NRF2 functionality intensifies inflammation and oxidative injury in neurodegenerative disease models. Thus, the modulation of this pathway is being investigated for therapeutic applications in both cancer and neurodegenerative diseases.
Collapse
|