1
|
Parveen D, Mittal S, Shrivas R, Pathak B, Roy DK. Hydrophosphanylation of Alkynes via Magnesium Complexes: Evidence for Ligand Dependency in Structure-Activity Relationships. Chemistry 2025; 31:e202500002. [PMID: 40135670 DOI: 10.1002/chem.202500002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 03/27/2025]
Abstract
Pursuing practical, straightforward, and sustainable methods for forming carbon-phosphorus bonds is crucial in academia and industry. In this study, we showed that bis(diiminate)-based magnesium complexes [L(Mg-nBu)2] (nBu = n-butyl) could effectively catalyze the hydrophosphanylation of alkynes, resulting in monophosphanylated vinyledene- and 1,2-diphosphanylated alkanes in a stepwise manner. This transformation showcases an excellent atom economy, broad functional group tolerance, and gram-scale synthesis for organophosphorus compounds. Through controlled experiments and with the support of DFT calculations, we elucidated the reaction mechanism, identifying the active catalytic species and revealing a stepwise hydrophosphanylation process of alkynes. Although complex Mg-1 showed its potential in this transformation, complexes Mg-2 and Mg-3, having ethyl and phenyl spacers, produced a lower yield of hydrophosphanylated products, indicating the role of ligand (spacer) in this catalytic reaction. Further, the activity of Mg-1 was compared with a monomeric magnesium complex, Mg-4, and it was found that the performance of the Mg-4 in alkyne hydrophosphanylation is quite lower than the results obtained by using Mg-1. This work demonstrated that a dimeric magnesium complex with a suitable spacer can enhance the catalytic activity manyfolds in the hydrophosphanylation of alkynes.
Collapse
Affiliation(s)
- Darakshan Parveen
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Sneha Mittal
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Radhika Shrivas
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Dipak Kumar Roy
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
2
|
Tortajada A, Hevia E. Room-Temperature Intermolecular Hydroamination of Vinylarenes Catalyzed by Alkali-Metal Ferrate Complexes. ACS ORGANIC & INORGANIC AU 2025; 5:62-68. [PMID: 39927098 PMCID: PMC11803465 DOI: 10.1021/acsorginorgau.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 02/11/2025]
Abstract
Alkene hydroamination of multiple bonds represents a valuable and atom-economical approach to accessing amines, using simple and widely available starting materials. This reaction requires a metal catalyst, and despite the success of noble transition metals, s-block, or f-block elements, iron organometallic complexes have found limited applications. Partnering iron with an alkali metal and switching on bimetallic cooperativity, we report the synthesis and characterization of a series of highly reactive alkali-metal alkyl ferrate complexes, which can deprotonate amines and activate them toward the catalytic hydroamination of vinylarenes. An alkali-metal effect has been observed, with the sodium analogue being the best for an efficient hydroamination of different styrene derivatives and amines. Stoichiometric studies on the reaction of the sodium tris(alkyl) ferrate complex with 3 mol equiv of piperidine evidenced the ability of the three alkyl groups on Fe to undergo amine metalation, furnishing a novel tris(amido) sodium ferrate which is postulated as a key intermediate in these catalytic transformations. The enhanced reactivity of these alkali-metal ferrates contrasts sharply with that of the Fe(II) bis(alkyl) precursor which is completely inert toward alkene hydroamination.
Collapse
Affiliation(s)
- Andreu Tortajada
- Departement für Chemie, Biochemie
und Pharmazie, Universität Bern, 3012 Bern, Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie
und Pharmazie, Universität Bern, 3012 Bern, Switzerland
| |
Collapse
|
3
|
Chen X, Yang D, Cao F, Mo Z. Multielectron Reduction of Nitrosoarene via Aluminylene-Silylene Cooperation. J Am Chem Soc 2024; 146:29278-29284. [PMID: 39418648 DOI: 10.1021/jacs.4c10323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The cooperative effects of main-group elements pave the way for novel chemical transformations. However, the potential of bimetallic complexes featuring the most abundant aluminum and silicon elements remains largely unexplored. In this study, we present the synthesis and characterization of bis(silylene)-stabilized aluminylene 2. The cooperation between aluminylene and silylene allows for the facile cleavage of the N-O bond in nitrosoarenes, producing an aluminum imide complex 4 and tetracyclic oxazasilaalanes 5 and 6, and also promotes the dearomatization of 2-methylquinoline, yielding a silylalane 7. In addition, 2 is an effective precatalyst for the reductive coupling of nitrosoarenes to azoxyarenes. These results outline an approach for orchestrating aluminum and silicon cooperation to facilitate chemical bond activation.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dezhi Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fanshu Cao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenbo Mo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Schreiner SHF, Göhler F, Almquist CC, Rüffer T, Piers WE, Seyller T, Kretschmer R. Accessing Homo- and Heterobimetallic Complexes with a Dianionic Pentadentate Ligand. Inorg Chem 2024; 63:19665-19675. [PMID: 39377374 DOI: 10.1021/acs.inorgchem.4c02833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The tetrapyrazolylpyridyl diborate (B2Pz4Py) ligand provides a suitable platform for the isolation of heterobimetallic main-group element compounds as well as homotetrametallic copper complexes. The heterobimetallic tin(II)-lithium(I) (1) and tin(II)-thallium(I) (2) complexes have been synthesized, isolated, and fully characterized including single-crystal X-ray diffraction analysis. When reacted with copper(I) sources, complex 2 grants access to a homotetrametallic copper(I) complex (4). Upon subsequent oxidation, 4 gives rise to the bimetallic copper(II) complex 5, in which the two copper(II) centers are connected via a bridging bromido ligand (CuII-μ-Br-CuII).
Collapse
Affiliation(s)
- Simon H F Schreiner
- Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany
| | - Fabian Göhler
- Institut für Physik, Technische Universität Chemnitz, Chemnitz 09126, Germany
- Centre for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz 09126, Germany
| | - C Christopher Almquist
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, AB, Canada
| | - Tobias Rüffer
- Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany
| | - Warren E Piers
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, AB, Canada
| | - Thomas Seyller
- Institut für Physik, Technische Universität Chemnitz, Chemnitz 09126, Germany
- Centre for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz 09126, Germany
| | - Robert Kretschmer
- Institut für Chemie, Technische Universität Chemnitz, Strasse der Nationen 62, Chemnitz 09111, Germany
- Jena Center of Soft Matter, Friedrich-Schiller-Universität Jena, Philosophenweg 7, Jena 07443, Germany
| |
Collapse
|
5
|
Dankert F, Hevia E. Synthesis and Modular Reactivity of Low Valent Al/Zn Heterobimetallics Supported by Common Monodentate Amides. Chemistry 2024; 30:e202304336. [PMID: 38189633 DOI: 10.1002/chem.202304336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
Recent advances on low valent main group metal chemistry have shown the excellent potential of heterobimetallic complexes derived from Al(I) to promote cooperative small molecule activation processes. A signature feature of these complexes is the use of bulky chelating ligands which act as spectators providing kinetic stabilization to their highly reactive Al-M bonds. Here we report the synthesis of novel Al/Zn bimetallics prepared by the selective formal insertion of AlCp* into the Zn-N bond of the utility zinc amides ZnR2 (R=HMDS, hexamethyldisilazide; or TMP, 2,2,6,6-tetramethylpiperidide). By systematically assessing the reactivity of the new [(R)(Cp*)AlZn(R)] bimetallics towards carbodiimides, structural and mechanistic insights have been gained on their ability to undergo insertion in their Zn-Al bond. Disclosing a ligand effect, when R=TMP, an isomerization process can be induced giving [(TMP)2AlZn(Cp*)] which displays a special reactivity towards carbodiimides and carbon dioxide involving both its Al-N bonds, leaving its Al-Zn bond untouched.
Collapse
Affiliation(s)
- Fabian Dankert
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestraße 3, Bern, 3012, Switzerland
| | - Eva Hevia
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestraße 3, Bern, 3012, Switzerland
| |
Collapse
|
6
|
Vrána J, Růžičková Z, Růžička A, Dostál L. Synthesis and reactivity of alkali metal aluminates bearing bis(organoamido)phosphane ligand. Dalton Trans 2023; 52:12623-12631. [PMID: 37610275 DOI: 10.1039/d3dt01859h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In this study, we report a group of alkali metal aluminates bearing bis(organoamido)phosphane ligand. The starting complex {[PhP(NtBu)2]AlMe2}Li·OEt2 (1) was prepared by stepwise deprotonation of the parent PhP(NHtBu)2 by nBuLi and AlMe3. Further derivatization of aluminate 1 was performed by the virtual substitution of lithium -{[PhP(NtBu)2]AlMe2}K (2), methyl substituents - {[PhP(NtBu)2]AlH2}Li·THF (3), modification of steric bulk and induction effects on the phosphorus atom - {[tBuP(N-2,6-iPr2C6H3)2]AlMe2}Li·(OEt2)2 (4), and phosphorus atom oxidation state {[Ph(Y)P(NtBu)2]AlMe2}Li (Y = O (5), S (6), Se (7), Te (8)). The structure causing non-covalent interactions in 1-4 were evaluated with the help of theoretical calculations and topological analysis ranging from π-electron system-metal to agostic interactions of various types. The further reactions of 1 with various nucleophiles were found to be a versatile tool for the preparation of iminophosphonamides via the formation of P-E bond (E = Si, Ge, Sn, Pb, P, and C) and followed by P(III) → P(V) tautomeric shift.
Collapse
Affiliation(s)
- Jan Vrána
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| | - Zdeňka Růžičková
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| | - Libor Dostál
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| |
Collapse
|
7
|
Alférez MG, Moreno JJ, Maya C, Campos J. Polarized Au(I)/Rh(I) bimetallic pairs cooperatively trigger ligand non-innocence and bond activation. Dalton Trans 2023; 52:3835-3845. [PMID: 36866716 PMCID: PMC10029337 DOI: 10.1039/d3dt00410d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
The combination of molecular metallic fragments of contrasting Lewis character offers many possibilities for cooperative bond activation and for the disclosure of unusual reactivity. Here we provide a systematic investigation on the partnership of Lewis basic Rh(I) compounds of type [(η5-L)Rh(PR3)2] (η5-L = (C5Me5)- or (C9H7)-) with highly congested Lewis acidic Au(I) species. For the cyclopentadienyl Rh(I) compounds, we demonstrate the non-innocent role of the typically robust (C5Me5)- ligand through migration of a hydride to the Rh site and provide evidence for the direct implication of the gold fragment in this unusual bimetallic ligand activation event. This process competes with the formation of dinuclear Lewis adducts defined by a dative Rh → Au bond, with selectivity being under kinetic control and tunable by modifying the stereoelectronic and chelating properties of the phosphine ligands bound to the two metals. We provide a thorough computational study on the unusual Cp* non-innocent behavior and the divergent bimetallic pathways observed. The cooperative FLP-type reactivity of all bimetallic pairs has been investigated and computationally examined for the case of N-H bond activation in ammonia.
Collapse
Affiliation(s)
- Macarena G Alférez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Juan J Moreno
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Celia Maya
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
8
|
Borys AM, Dell'Aera M, Capriati V, Hevia E. Structural and synthetic insights into the chemistry of lithium tetraorganozincates. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
9
|
Navarro M, Moreno JJ, Pérez-Jiménez M, Campos J. Small molecule activation with bimetallic systems: a landscape of cooperative reactivity. Chem Commun (Camb) 2022; 58:11220-11235. [PMID: 36128973 PMCID: PMC9536487 DOI: 10.1039/d2cc04296g] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
There is growing interest in the design of bimetallic cooperative complexes, which have emerged due to their potential for bond activation and catalysis, a feature widely exploited by nature in metalloenzymes, and also in the field of heterogeneous catalysis. Herein, we discuss the widespread opportunities derived from combining two metals in close proximity, ranging from systems containing multiple M-M bonds to others in which bimetallic cooperation occurs even in the absence of M⋯M interactions. The choice of metal pairs is crucial for the reactivity of the resulting complexes. In this context, we describe the prospects of combining not only transition metals but also those of the main group series, which offer additional avenues for cooperative pathways and reaction discovery. Emphasis is given to mechanisms by which bond activation occurs across bimetallic structures, which is ascribed to the precise synergy between the two metal atoms. The results discussed herein indicate a future landscape full of possibilities within our reach, where we anticipate that bimetallic synergism will have an important impact in the design of more efficient catalytic processes and the discovery of new catalytic transformations.
Collapse
Affiliation(s)
- Miquel Navarro
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Juan José Moreno
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Marina Pérez-Jiménez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
| |
Collapse
|
10
|
Banerjee S, Macdonald PA, Orr SA, Kennedy AR, van Teijlingen A, Robertson SD, Tuttle T, Mulvey RE. Hydrocarbon Soluble Alkali-Metal-Aluminium Hydride Surrog[ATES]. Chemistry 2022; 28:e202201085. [PMID: 35811447 PMCID: PMC9804340 DOI: 10.1002/chem.202201085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 01/05/2023]
Abstract
A series of group 1 hydrocarbon-soluble donor free aluminates [AM(t BuDHP)(TMP)Al(i Bu)2 ] (AM=Li, Na, K, Rb) have been synthesised by combining an alkali metal dihydropyridyl unit [(2-t BuC5 H5 N)AM)] containing a surrogate hydride (sp3 C-H) with [(i Bu)2 Al(TMP)]. These aluminates have been characterised by X-ray crystallography and NMR spectroscopy. While the lithium aluminate forms a monomer, the heavier alkali metal aluminates exist as polymeric chains propagated by non-covalent interactions between the alkali metal cations and the alkyldihydropyridyl units. Solvates [(THF)Li(t BuDHP)(TMP)Al(i Bu)2 ] and [(TMEDA)Na(t BuDHP)(TMP)Al(i Bu)2 ] have also been crystallographically characterised. Theoretical calculations show how the dispersion forces tend to increase on moving from Li to Rb, as opposed to the electrostatic forces of stabilization, which are orders of magnitude more significant. Having unique structural features, these bimetallic compounds can be considered as starting points for exploring unique reactivity trends as alkali-metal-aluminium hydride surrog[ATES].
Collapse
Affiliation(s)
- Sumanta Banerjee
- WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Peter A. Macdonald
- WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Samantha A. Orr
- WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Alan R. Kennedy
- WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | | | - Stuart D. Robertson
- WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Tell Tuttle
- WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Robert E. Mulvey
- WestCHEM, Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
11
|
Ballmann GM, Gentner TX, Kennedy AR, Hevia E, Mulvey RE. Heavy Alkali Metal Manganate Complexes: Synthesis, Structures and Solvent-Induced Dissociation Effects. Chemistry 2022; 28:e202201716. [PMID: 35775467 PMCID: PMC9804227 DOI: 10.1002/chem.202201716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/05/2023]
Abstract
Rare examples of heavier alkali metal manganates [{(AM)Mn(CH2 SiMe3 )(N'Ar )2 }∞ ] (AM=K, Rb, or Cs) [N'Ar =N(SiMe3 )(Dipp), where Dipp=2,6-iPr2 -C6 H3 ] have been synthesised with the Rb and Cs examples crystallographically characterised. These heaviest manganates crystallise as polymeric zig-zag chains propagated by AM⋅⋅⋅π-arene interactions. Key to their preparation is to avoid Lewis base donor solvents. In contrast, using multidentate nitrogen donors encourages ligand scrambling leading to redistribution of these bimetallic manganate compounds into their corresponding homometallic species as witnessed for the complete Li - Cs series. Adding to the few known crystallographically characterised unsolvated and solvated rubidium and caesium s-block metal amides, six new derivatives ([{AM(N'Ar )}∞ ], [{AM(N'Ar )⋅TMEDA}∞ ], and [{AM(N'Ar )⋅PMDETA}∞ ] where AM=Rb or Cs) have been structurally authenticated. Utilising monodentate diethyl ether as a donor, it was also possible to isolate and crystallographically characterise sodium manganate [(Et2 O)2 Na(n Bu)Mn[(N'Ar )2 ], a monomeric, dinuclear structure prevented from aggregating by two blocking ether ligands bound to sodium.
Collapse
Affiliation(s)
- Gerd M. Ballmann
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Thomas X. Gentner
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Alan R. Kennedy
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Eva Hevia
- Department für Chemie und BiochemieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Robert E. Mulvey
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
12
|
Biswas S, Patel N, Deb R, Majumdar M. Chemistry of the Bis(imine)-Based Tetradentate Ligand Stabilized Group 14 E(II) Cations (E=Ge and Sn). CHEM REC 2022; 22:e202200003. [PMID: 35253982 DOI: 10.1002/tcr.202200003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/10/2022]
Abstract
The ambiphilic Ge(II) and Sn(II) cationic species have been reported to be isolated through kinetic or thermodynamic stabilizations. Nonetheless, steric congestion or excessive coordination of donor atoms to the cationic center concurrently disfavors its prompt reactivity. Our research in this field revolves around the utilization of structurally non-rigid bis(imine) based tetradentate supporting ligands for the stabilization of Ge(II) and Sn(II) cationic species. Such E(II) cationic systems have been advantaged due to inherent flexibility present at the ligand backbone allowing disposal of E(II) orbitals through geometric rearrangements for further reactivity. The bifunctionality present in the ligand enables the first examples of Ge(II) bis-monocations. Furthermore, the redox-active nature of the ligand encourages participation in chemical transformations. In this personal account we have provided a detailed discussion of our published work in this direction in the last five years.
Collapse
Affiliation(s)
- Swastik Biswas
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Niranjan Patel
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Rahul Deb
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Moumita Majumdar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|
13
|
Platten A, Borys A, Hevia E. Hydrophosphinylation of Styrenes Catalysed by Well‐Defined sBlock Bimetallics. ChemCatChem 2021. [DOI: 10.1002/cctc.202101853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Andrew Platten
- University of Bern: Universitat Bern Department of Chemistry and Biochemistry SWITZERLAND
| | - Andryj Borys
- University of Bern: Universitat Bern Department of Chemistry and Biochemistry SWITZERLAND
| | - Eva Hevia
- Universitat Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern SWITZERLAND
| |
Collapse
|