An in vivo cross-linkable hyaluronan gel with inherent anti-inflammatory properties reduces OA cartilage destruction in female mice subjected to cruciate ligament transection.
Osteoarthritis Cartilage 2017;
25:157-165. [PMID:
27587077 DOI:
10.1016/j.joca.2016.08.011]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE
To explore the possibility of cartilage protection in osteoarthritis (OA) by intraarticular injection of a chemically modified hyaluronan (HA) gel and investigate whether the chemical modifications provide intrinsic anti-inflammatory activity.
METHOD
OA was induced in C57BL/6 mice by anterior cruciate ligament transection (ACLT) and HA gel or carbazate-modified component was injected intra-articularly. Assessment of cartilage rescue was performed by histology, immunohistochemistry and TUNEL analysis. Serum levels of proinflammatory cytokines were evaluated with cytometric bead array, measuring IL-1β, TNF, IFN-γ, KC/CXCL1 and MCP-1.
RESULTS
Intraarticular injection of the HA gel showed significantly reduced cartilage destruction and decreased osteophyte formation. Besides the biological and biomechanical effects of HA, we investigated lipid peroxidation products as an alternative inflammatory and potential mechanism contributing to OA. To address this, injection of the carbazate-modified component alone was performed, which also demonstrated a cartilage-saving effect. Besides the cartilage amelioration effects, decreased apoptosis, 4-hydroxynonenal (4-HNE) and MHC class II staining was recorded. No changes in serum levels of proinflammatory cytokines were detected.
CONCLUSION
We have shown that the HA gel has an anti-destructive effect on articular cartilage (AC). Our results demonstrated that the carbazate-modified component could suppress apoptotic events, potentially by quenching of ROS/LPO products such as 4-HNE in OA joints. Modification of the HA molecule offers opportunities to introduce (covalent) coupling of additional molecules to the gel, with controlled retention and subsequent release in the joint.
Collapse