1
|
Partanen J, Hyvärinen K, Bickeböller H, Bogunia-Kubik K, Crossland RE, Ivanova M, Perutelli F, Dressel R. Review of Genetic Variation as a Predictive Biomarker for Chronic Graft-Versus-Host-Disease After Allogeneic Stem Cell Transplantation. Front Immunol 2020; 11:575492. [PMID: 33193367 PMCID: PMC7604383 DOI: 10.3389/fimmu.2020.575492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is one of the major complications of allogeneic stem cell transplantation (HSCT). cGvHD is an autoimmune-like disorder affecting multiple organs and involves a dermatological rash, tissue inflammation and fibrosis. The incidence of cGvHD has been reported to be as high as 30% to 60% and there are currently no reliable tools for predicting the occurrence of cGvHD. There is therefore an important unmet clinical need for predictive biomarkers. The present review summarizes the state of the art for genetic variation as a predictive biomarker for cGvHD. We discuss three different modes of action for genetic variation in transplantation: genetic associations, genetic matching, and pharmacogenetics. The results indicate that currently, there are no genetic polymorphisms or genetic tools that can be reliably used as validated biomarkers for predicting cGvHD. A number of recommendations for future studies can be drawn. The majority of studies to date have been under-powered and included too few patients and genetic markers. Like in all complex multifactorial diseases, large collaborative genome-level studies are now needed to achieve reliable and unbiased results. Some of the candidate genes, in particular, CTLA4, HSPE, IL1R1, CCR6, FGFR1OP, and IL10, and some non-HLA variants in the HLA gene region have been replicated to be associated with cGvHD risk in independent studies. These associations should now be confirmed in large well-characterized cohorts with fine mapping. Some patients develop cGvHD despite very extensive immunosuppression and other treatments, indicating that the current therapeutic regimens may not always be effective enough. Hence, more studies on pharmacogenetics are also required. Moreover, all of these studies should be adjusted for diagnostic and clinical features of cGvHD. We conclude that future studies should focus on modern genome-level tools, such as machine learning, polygenic risk scores and genome-wide association study-transcription meta-analyses, instead of focusing on just single variants. The risk of cGvHD may be related to the summary level of immunogenetic differences, or whole genome histocompatibility between each donor-recipient pair. As the number of genome-wide analyses in HSCT is increasing, we are approaching an era where there will be sufficient data to incorporate these approaches in the near future.
Collapse
Affiliation(s)
- Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Kati Hyvärinen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Katarzyna Bogunia-Kubik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Rachel E Crossland
- Haematological Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Milena Ivanova
- Medical University, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Francesca Perutelli
- Haematological Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Ghasemi K, Parkhideh S, Kazemi MH, Salimi M, Salari S, Nalini R, Hajifathali A. The role of serum uric acid in the prediction of graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. J Clin Lab Anal 2020; 34:e23271. [PMID: 32118321 PMCID: PMC7370721 DOI: 10.1002/jcla.23271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/21/2020] [Accepted: 02/12/2020] [Indexed: 01/11/2023] Open
Abstract
Background Uric acid (UA) level is of the valuable signs of inflammation. However, the role of UA in the outcomes of hematopoietic stem cell transplantation (HSCT) such as GVHD and patients’ overall survival is still a matter of debate. In this study, we aimed to evaluate the relationship between UA levels and GVHD incidence and overall survival in allogeneic HSCT patients. Methods A total of 201 patients who were admitted for allogeneic transplantation at Taleghani hospital, Tehran, Iran, were considered for retrospective analysis. Serum UA levels from 1 week before transplantation until 2 weeks after transplantation were used to determine thresholds and find out the association of serum UA levels with GVHD and overall survival. Results We showed that the determined thresholds using receiver operating characteristic curves have poor predictive value for GVHD and overall survival. The patients with serum UA higher than 3.4 mg/dL had 37% lower odds of GVHD incidence and 35% lower hazard of death than patients with UA lower than 3.4 mg/dL. Conclusion Our results indicated that serum UA levels lower than 3.4 mg/dL could significantly increase the incidence of GVHD and hazard of death. The antioxidant functions of UA could explain the lower incidence of GVHD in hyperuricemic patients. However, the inconsistencies of the previous studies require further investigation to elucidate the role of UA in the prediction of GVHD.
Collapse
Affiliation(s)
- Katayoon Ghasemi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayeh Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Nalini
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Application of latent class analysis in diagnosis of graft-versus-host disease by serum markers after allogeneic haematopoietic stem cell transplantation. Sci Rep 2020; 10:3633. [PMID: 32108153 PMCID: PMC7046680 DOI: 10.1038/s41598-020-60524-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/14/2020] [Indexed: 12/29/2022] Open
Abstract
Graft-versus-host disease (GVHD) is one of the major causes of morbidity and mortality in 25–70% of patients. The gold standard (GS) test to confirm the diagnosis of GVHD has some limitations. The current study was conducted to evaluate the accuracy of three serum markers in diagnosing GVHD without a GS. 94 patients who were hospitalized for allogeneic transplantation were studied. Mean levels from day of haematopoietic stem cell transplantation (HSCT) to discharge of serum uric acid (UA), lactate dehydrogenase (LDH), and creatinine (Cr) were measured for all participants. We adapted a Bayesian latent class analysis to modelling the results of each marker and combination of markers. The Sensitivity, Specificity, and area under receiver operating characteristic curve (AUC) for LDH were as 51%, 81%, and 0.70, respectively. For UA, the Sensitivity, Specificity, and AUC were 54%, 75%, and 0.71, respectively. The estimated Sensitivity, Specificity, and AUC of Cr were 72%, 94%, and 0.86, respectively. Adjusting for covariates, the combined Sensitivity, Specificity, and AUC of the optimal marker combination were 76%, 83%, and 0.94, respectively. To conclude, our findings suggested that Cr had the strongest diagnosis power for GVHD. Moreover, the classification accuracy of the three-marker combination outperforms the other combinations.
Collapse
|
4
|
Haen SP, Eyb V, Mirza N, Naumann A, Peter A, Löffler MW, Faul C, Vogel W, Bethge WA, Rammensee HG, Kanz L, Heni M. Uric acid as a novel biomarker for bone-marrow function and incipient hematopoietic reconstitution after aplasia in patients with hematologic malignancies. J Cancer Res Clin Oncol 2017; 143:759-771. [PMID: 28210842 DOI: 10.1007/s00432-017-2348-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/24/2017] [Indexed: 01/29/2023]
Abstract
PURPOSE Prolonged aplasia and graft failure (GF) represent life-threatening complications after hematopoietic cell transplantation (HCT) requiring suitable biomarkers for early detection and differentiation between GF and poor graft function (PGF). Uric acid (UA) is a strong immunological danger signal. METHODS Laboratory results were analyzed from patients undergoing either allogeneic or autologous HCT or induction chemotherapy for acute leukemia (n = 50 per group, n = 150 total). RESULTS During therapy, UA levels declined from normal values to hypouricemic values (all p < 0.001). Alongside hematopoietic recovery, UA serum levels returned to baseline values. During aplasia, UA levels remained low and started steadily increasing (defined as >two consecutive days, median one 2-day increase) at a median of 1 day before rising leukocytes in allogeneic HCT (p = 0.01) and together with leukocytes in autologous HCT (median one 2-day increase). During induction chemotherapy, a UA increase was also observed alongside rising leukocytes/neutrophils but also several times during aplasia (median 3 increases). Most HCT patients had no detectable leukocytes during aplasia, while some leukocytes remained detectable after induction therapy. No increase in UA levels was observed without concomitant or subsequent rise of leukocytes. CONCLUSIONS Changes in UA serum levels can indicate incipient or remaining immunological activity after HCT or induction therapy. They may, therefore, help to differentiate between PGF and GF.
Collapse
Affiliation(s)
- Sebastian P Haen
- Medizinische Universitaetsklinik, Abteilung II fuer Onkologie, Haematologie, Immunologie, Rheumatologie und Pulmologie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany.
- Interfakultaeres Institut fuer Zellbiologie, Abteilung Immunologie, Auf der Morgenstelle 15, 72076, Tuebingen, Germany.
| | - Vicky Eyb
- Medizinische Universitaetsklinik, Abteilung II fuer Onkologie, Haematologie, Immunologie, Rheumatologie und Pulmologie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
| | - Nora Mirza
- Medizinische Universitaetsklinik, Abteilung II fuer Onkologie, Haematologie, Immunologie, Rheumatologie und Pulmologie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
- Interfakultaeres Institut fuer Zellbiologie, Abteilung Immunologie, Auf der Morgenstelle 15, 72076, Tuebingen, Germany
| | - Aline Naumann
- Institut fuer klinische Epidemiologie und angewandte Biometrie, Silcherstr. 5, 72076, Tuebingen, Germany
| | - Andreas Peter
- Medizinische Universitaetsklinik, Abteilung IV fuer Endokrinologie, Diabetologie, Angiologie, Nephrologie und Klinische Chemie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| | - Markus W Löffler
- Interfakultaeres Institut fuer Zellbiologie, Abteilung Immunologie, Auf der Morgenstelle 15, 72076, Tuebingen, Germany
| | - Christoph Faul
- Medizinische Universitaetsklinik, Abteilung II fuer Onkologie, Haematologie, Immunologie, Rheumatologie und Pulmologie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
| | - Wichard Vogel
- Medizinische Universitaetsklinik, Abteilung II fuer Onkologie, Haematologie, Immunologie, Rheumatologie und Pulmologie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
| | - Wolfgang A Bethge
- Medizinische Universitaetsklinik, Abteilung II fuer Onkologie, Haematologie, Immunologie, Rheumatologie und Pulmologie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
| | - Hans-Georg Rammensee
- Interfakultaeres Institut fuer Zellbiologie, Abteilung Immunologie, Auf der Morgenstelle 15, 72076, Tuebingen, Germany
| | - Lothar Kanz
- Medizinische Universitaetsklinik, Abteilung II fuer Onkologie, Haematologie, Immunologie, Rheumatologie und Pulmologie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
| | - Martin Heni
- Medizinische Universitaetsklinik, Abteilung IV fuer Endokrinologie, Diabetologie, Angiologie, Nephrologie und Klinische Chemie, Otfried Mueller Str. 10, 72076, Tuebingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Muenchen-Neuherberg, Germany
| |
Collapse
|