1
|
Shi QQ, Huang YH, Li YF, Zhen SY, Li YH, Huang JY, Wang JY, Zhou XY. PEBP4 deficiency aggravates LPS-induced acute lung injury and alveolar fluid clearance impairment via modulating PI3K/AKT signaling pathway. Cell Mol Life Sci 2024; 81:133. [PMID: 38472560 DOI: 10.1007/s00018-024-05168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Acute lung injury (ALI) is a common clinical syndrome, which often results in pulmonary edema and respiratory distress. It has been recently reported that phosphatidylethanolamine binding protein 4 (PEBP4), a basic cytoplasmic protein, has anti-inflammatory and hepatoprotective effects, but its relationship with ALI remains undefined so far. In this study, we generated PEBP4 knockout (KO) mice to investigate the potential function of PEBP4, as well as to evaluate the capacity of alveolar fluid clearance (AFC) and the activity of phosphatidylinositide 3-kinases (PI3K)/serine-theronine protein kinase B (PKB, also known as AKT) signaling pathway in lipopolysaccharide (LPS)-induced ALI mice models. We found that PEBP4 deficiency exacerbated lung pathological damage and edema, and increased the wet/dry weight ratio and total protein concentration of bronchoalveolar lavage fluid (BALF) in LPS-treated mice. Meanwhile, PEBP4 KO promoted an LPS-induced rise in the pulmonary myeloperoxidase (MPO) activity, serum interleuin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels, and pulmonary cyclooxygenase-2 (COX-2) expression. Mechanically, PEBP4 deletion further reduced the protein expression of Na+ transport markers, including epithelial sodium channel (ENaC)-α, ENaC-γ, Na,K-ATPase α1, and Na,K-ATPase β1, and strengthened the inhibition of PI3K/AKT signaling in LPS-challenged mice. Furthermore, we demonstrated that selective activation of PI3K/AKT with 740YP or SC79 partially reversed all of the above effects caused by PEBP4 KO in LPS-treated mice. Altogether, our results indicated the PEBP4 deletion has a deterioration effect on LPS-induced ALI by impairing the capacity of AFC, which may be achieved through modulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qiao-Qing Shi
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 461 BaYi Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Science and Education, Jiangxi Chest Hospital, Nanchang, 330006, China
| | - Yong-Hong Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 461 BaYi Road, Nanchang, 330006, Jiangxi, P.R. China
| | - Yu-Fei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 461 BaYi Road, Nanchang, 330006, Jiangxi, P.R. China
| | - Shuang-Yan Zhen
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Yan-Hong Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jia-Yi Huang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330103, China
| | - Jia-Yang Wang
- School of Stomatology, Nanchang University, Nanchang, 330103, China
| | - Xiao-Yan Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 461 BaYi Road, Nanchang, 330006, Jiangxi, P.R. China.
- Jiangxi Province Key Laboratory of Tumor Etiology and Molecular Pathology, Nanchang, 330006, China.
| |
Collapse
|