1
|
Ong SC, Julian BA. Post-transplant IgA Nephropathy. Semin Nephrol 2024; 44:151570. [PMID: 40087123 DOI: 10.1016/j.semnephrol.2025.151570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Immunoglobulin A (IgA) nephropathy is the most common glomerulonephritis in many countries. Most patients progress to kidney failure for which kidney transplantation is the optimal therapy. Unfortunately, IgA nephropathy commonly recurs post transplant and shortens allograft survival. Multiple recipient and donor characteristics have been associated with the risk of recurrence, although these have varied between different cohorts. The clinical expression of post-transplant IgA nephropathy is modified by immunosuppression. Biomarkers have been identified and studied in native-kidney IgA nephropathy but need validation in transplantation. Treatment of recurrent IgA nephropathy hinges on supportive measures derived largely from evidence in native-kidney IgA nephropathy. The improved understanding of the autoimmune mechanisms of disease in native-kidney IgA nephropathy has led to promising new targets for treatment, which may in turn be deployed in post-transplant IgA nephropathy.
Collapse
Affiliation(s)
- Song C Ong
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Bruce A Julian
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Cattran DC, Floege J, Coppo R. Evaluating Progression Risk in Patients With Immunoglobulin A Nephropathy. Kidney Int Rep 2023; 8:2515-2528. [PMID: 38106572 PMCID: PMC10719597 DOI: 10.1016/j.ekir.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023] Open
Abstract
The highly variable rate of decline in kidney function in patients with immunoglobulin A nephropathy (IgAN) provides a major clinical challenge. Predicting which patients will progress to kidney failure, and how quickly, is difficult. Multiple novel therapies are likely to be approved in the short-term, but clinicians lack the tools to identify patients most likely to benefit from specific treatments at the right time. Noninvasive and validated markers for selecting at-risk patients and longitudinal monitoring are urgently needed. This review summarizes what is known about demographic, clinical, and histopathologic prognostic markers in the clinician's toolkit, including the International IgAN Prediction Tool. We also briefly review what is known on these topics in children and adolescents with IgAN. Although helpful, currently used markers leave clinicians heavily reliant on histologic features from the diagnostic kidney biopsy and standard clinical data to guide treatment choice, and very few noninvasive markers reflect treatment efficacy over time. Novel prognostic and predictive markers are under clinical investigation, with considerable progress being made in markers of complement activation. Other areas of research are the interplay between gut microbiota and galactose-deficient IgA1 expression; microRNAs; imaging; artificial intelligence; and markers of fibrosis. Given the rate of therapeutic advancement, the remaining gaps in biomarker research need to be addressed. We finish by describing our route to clinical utility of predictive and prognostic markers in IgAN. This route will provide us with the chance to improve IgAN prognosis by using robust, clinically practical markers to inform patient care.
Collapse
Affiliation(s)
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Rosanna Coppo
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| |
Collapse
|
3
|
Zhao H, Wang L, Fang C, Li C, Zhang L. Factors influencing the diagnostic and prognostic values of circulating tumor cells in breast cancer: a meta-analysis of 8,935 patients. Front Oncol 2023; 13:1272788. [PMID: 38090481 PMCID: PMC10711619 DOI: 10.3389/fonc.2023.1272788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 06/29/2024] Open
Abstract
Background Circulating tumor cells (CTCs) could serve as a predictive biomarker in breast cancer (BC). Due to its high heterogeneity, the diagnostic and prognostic values of CTC are challenging. Methods We searched published studies from the databases of PubMed, Cochrane Library, Embase, and MEDLINE. The detection capability and hazard ratios (HRs) of CTCs were extracted as the clinical diagnosis and prognosis evaluation. Subgroup analyses were divided according to the detection methods, continents, treatment periods, therapeutic plans, and cancer stages. Results In this study, 35 publications had been retrieved with 8,935 patients enrolled. The diagnostic efficacy of CTC detection has 74% sensitivity and 98% specificity. The positive CTC detection (CTC+ ) would predict worse OS and PFS/DFS in both mid-therapy and post-therapy (HROS, 3.09; 95% CI, 2.17–4.39; HRPFS/DFS, 2.06; 95% CI, 1.72–2.47). Moreover, CTC+ indicated poor survival irrespective of the treatment phases and sampling times (HROS, 2.43; 95% CI, 1.85–3.19; HRPFS/DFS, 1.82; 95% CI, 1.66–1.99). The CTC+ was associated with poor survival regardless of the continents of patients (HROS = 2.43; 95% CI, 1.85–3.19). Conclusion Our study suggested that CTC+ was associated with a worse OS and PFS/DFS in the Asian population. The detection method, the threshold level of CTC+ , therapeutic approaches, and sampling times would not affect its diagnostic and prognostic values.
Collapse
Affiliation(s)
- Hongfang Zhao
- Clinical Medicine College, Hebei University, Baoding, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Luxuan Wang
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
| | - Chuan Fang
- Clinical Medicine College, Hebei University, Baoding, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| | - Chunhui Li
- Clinical Medicine College, Hebei University, Baoding, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| | - Lijian Zhang
- Clinical Medicine College, Hebei University, Baoding, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| |
Collapse
|