1
|
Lee SY, Kim B, Lee SH, Ju K, Kim SM, Lee JH, Pang K. Biomechanical microenvironmental stimulating effect of pulsed electromagnetic field on the regeneration of crush injured rat sciatic nerve. Biomed Eng Lett 2023; 13:235-243. [PMID: 37124111 PMCID: PMC10130313 DOI: 10.1007/s13534-023-00276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
This study evaluated the biomechanical microenvironmental stimulating effect of pulsed electromagnetic field (PEMF) on the regeneration of crush-injured rat sciatic nerve, when combined with bone marrow mesenchymal stem cells (BMSCs) and recombinant human nerve growth factor (rhNGF-β), in the form of an adenoviral vector-mediated NGF. Sprague-Dawley rats were equally distributed into six groups; PBS, BMSC, NGF-Ad + BMSC, PEMF + PBS, PEMF + BMSC and PEMF + NGF-Ad + BMSC. The PBS group received PBS (volume: 10μL/rat), the BMSC group with BMSCs (1 × 106 cell/10 μL/rat) and NGF-Ad group with the rhNGF-β Ad infected BMSCs (1 × 106 cell/10 μL/rat) immediate after right sciatic nerve crush injury. The PEMF groups were exposed to PEMF of 1mT, 50 Hz, 1 h/day. The rats were observed for 3 weeks. PEMF alone did not showed the positive effect compared with negative control group. The groups transplanted with BMSCs showed higher axonal regeneration compared with the groups without transplantation of the cells whether BMSC was infected with NGF-Ad or not and whether the animals received PEMF. PEMF + NGF-Ad + BMSC group showed the significantly highest number of axons than the other groups. Functionally, all groups showed marked improvement at 3 weeks postoperatively although the difference was not statistically significant among the groups. PEMF showed the positive effect when combined with BMSC and NGF-ad in aspect of number of axons. Therefore, combining the microenvironment stimulation methods of PEMF and conventional methods such as transplantation of stem cells and growth factor could be considered for the regeneration methods in the nerve damage.
Collapse
Affiliation(s)
- Sang-Yoon Lee
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute, Innovation Research and Support Center for Dental Science, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Sung-Ho Lee
- Dental Life Science Research Institute, Innovation Research and Support Center for Dental Science, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Kyungwon Ju
- Dental Life Science Research Institute, Innovation Research and Support Center for Dental Science, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Soung-Min Kim
- Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Jong-Ho Lee
- Dental Life Science Research Institute, Innovation Research and Support Center for Dental Science, Seoul National University Dental Hospital, Seoul, Republic of Korea
- Oral Oncology Clinic, National Cancer Center, Il-San, Goyang-si, Republic of Korea
| | - KangMi Pang
- Department of Oral and Maxillofacial Surgery, Seoul National University Gwanak Dental Hospital, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826 Republic of Korea
| |
Collapse
|
2
|
Wan LQ, Zhang YY, Wang HF, Chen C, Li H, Zhang Y, Xue JF, Zhou QJ, Xie LX. Efficacy of rhNGF-loaded amniotic membrane transplantation for rabbit corneal epithelial and nerve regeneration. Int J Ophthalmol 2021; 14:1653-1659. [PMID: 34804853 DOI: 10.18240/ijo.2021.11.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
AIM To evaluate the efficacy of recombinant human nerve growth factor-loaded amniotic membrane (rhNGF-AM) on corneal epithelial and nerve regeneration in rabbit model. METHODS Freshly prepared human amniotic membrane (AM) were immersed into PBS buffer containing 100 or 500 µg/mL rhNGF for 15, 30, and 60min at 4°C. The in vitro release kinetics of rhNGF was measured with ELISA. For in vivo evaluation, the AM were immersed with 500 µg/mL rhNGF for 30min. Fifty-seven rabbits were selected to establish corneal epithelial defect model. In addition to the 19 rabbits in control group, 38 rabbits received AM transplantation with or without rhNGF after the removal of central epithelium. Corneal epithelial defect area, sub-epithelial nerve fiber density, corneal sensitivity, rhNGF contents in resident AM and corneas were measured after the surgery. RESULTS rhNGF was sustained release from the AM within 14d in vitro, with the positive correlation with initial immersion concentration. The immersion of AM in 500 µg/mL rhNGF for 30min achieved the most stable release within 14d. After transplantation in rabbit cornea, a high concentration of rhNGF in resident rhNGF-AM and cornea was maintained within 8d. Corneal epithelial healing, nerve fiber regeneration and the recovery of corneal sensitivity were significantly accelerated after the rhNGF-AM transplantation when compared to simple AM transplantation (all P<0.05). CONCLUSION Simple immersion of AM achieves the sustained release of rhNGF, and promotes corneal epithelial wound healing and nerve regeneration, as well as the recovery of corneal sensitivity in rabbit.
Collapse
Affiliation(s)
- Lu-Qin Wan
- Medical College of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Yang-Yang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Hui-Feng Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Chen Chen
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Hua Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Yuan Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Jun-Fa Xue
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Qing-Jun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Li-Xin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| |
Collapse
|
3
|
Li B, Wang X. Photobiomodulation enhances facial nerve regeneration via activation of PI3K/Akt signaling pathway-mediated antioxidant response. Lasers Med Sci 2021; 37:993-1006. [PMID: 34302577 PMCID: PMC8918185 DOI: 10.1007/s10103-021-03344-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/16/2021] [Indexed: 12/14/2022]
Abstract
Facial nerve dysfunction is a common clinical condition that leads to disfigurement and emotional distress in the affected individuals. This study aimed to evaluate whether photobiomodulation can enhance regeneration of crushed facial nerves and attempt to investigate the possible underlying mechanism of neuroprotective function and therapeutic target. Various parameters of photobiomodulation were assigned to the facial nerves and Schwann cells (SCs) separately during crushed injury in rats. Axonal regeneration, functional outcomes, and SC apoptosis, proliferation, and underlying mechanisms of action were evaluated by morphological, histopathological, and functional assessments, flow cytometry, western blotting, real-time PCR, and IncuCyte. The results showed that photobiomodulation improved axonal regeneration and functional recovery, and also promoted proliferation, and inhibited apoptosis of SCs, both of these were considered as the most effective parameters in 250mW group. In addition, the neuroprotective effects of photobiomodulation (500mW) were likely associated with oxidative stress-induced SC apoptosis via activation of the PI3K/Akt signaling pathway. Our results revealed that photobiomodulation significantly promoted axonal regeneration, functional recovery, and regeneration of the facial nucleus, and its mechanism was related to the up-regulation of the PI3K/Akt signaling pathway. These findings provide clear experimental evidence of photobiomodulation as an alternative therapeutic strategy for peripheral nerve damage.
Collapse
Affiliation(s)
- Bohan Li
- Department of Stomatology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Xiao Wang
- Department of Stomatology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
4
|
Montes Angeles CD, Andrade Gonzalez RD, Hernandez EP, García Hernández AL, Pérez Martínez IO. Sensory, Affective, and Cognitive Effects of Trigeminal Injury in Mice. J Oral Maxillofac Surg 2020; 78:2169-2181. [PMID: 32866484 DOI: 10.1016/j.joms.2020.07.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE To characterize adequate study of chronic neuropathic orofacial pain induced by a mental nerve injury in a mouse model, we propose a behavioral assessment of its dimensions: sensory, affective, and cognitive. MATERIALS AND METHODS Trigeminal injury was induced by a chronic mental nerve constriction (MnC). Behavioral tests were conducted to assess the different dimensions of pain and to evaluate the general well-being of mice. RESULTS Rodents who went through MnC showed signs of mechanical hyperalgesia and increased escape/avoidance behavior. They showed no alterations in general well-being behaviors, yet the injury was sufficient to induce impairment in the ability to adapt to the environmental requirements. CONCLUSIONS MnC injury is an efficient model for the study of orofacial pain in mice, capable of inducing impairment in the different dimensions of pain. Intensity and temporality of its effects make our model less aggressive, yet effective to generate cognitive impairment. This work provides a solid foundation for the study of the neural circuits involved in the processing of neuropathic orofacial pain.
Collapse
Affiliation(s)
- Claudia Daniela Montes Angeles
- Student/Resident, Sección de neurobiología de las sensaciones orales, Laboratorio de Investigación odontológica, Clínica Universitaria de Salud Integral Almaraz, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México
| | - Rey David Andrade Gonzalez
- Student/Resident, Sección de neurobiología de las sensaciones orales, Laboratorio de Investigación odontológica, Clínica Universitaria de Salud Integral Almaraz, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México
| | - Elias Perrusquia Hernandez
- Student/Resident, Sección de neurobiología de las sensaciones orales, Laboratorio de Investigación odontológica, Clínica Universitaria de Salud Integral Almaraz, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México
| | - Ana Lilia García Hernández
- Student/Resident, Research Professor, Sección de Osteoinmunología, Laboratorio de Investigación odontológica, Clínica Universitaria de Salud Integral Almaraz, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México
| | - Isaac Obed Pérez Martínez
- Student/Resident, Research Professor, Sección de neurobiología de las sensaciones orales, Laboratorio de Investigación odontológica, Clínica Universitaria de Salud Integral Almaraz, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México.
| |
Collapse
|
5
|
Dias FJ, Fazan VPS, Cury DP, de Almeida SRY, Borie E, Fuentes R, Coutinho-Netto J, Watanabe IS. Growth factors expression and ultrastructural morphology after application of low-level laser and natural latex protein on a sciatic nerve crush-type injury. PLoS One 2019; 14:e0210211. [PMID: 30625210 PMCID: PMC6326513 DOI: 10.1371/journal.pone.0210211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
The effects of low-level laser therapy (LLLT) and natural latex protein (F1, Hevea brasiliensis) were evaluated on crush-type injuries (15kg) to the sciatic nerve in the expressions of nerve growth factor (NGF) and vascular endothelium growth factor (VEGF) and ultrastructural morphology to associate with previous morphometric data using the same protocol of injury and treatment. Thirty-six male rats were allocated into six experimental groups (n = 6): 1-Control; 2-Exposed nerve; 3-Injured nerve; 4-LLLT (15J/cm2, 780nm, 30mW, Continuous Wave) treated injured nerve; 5-F1 (0,1mg) treated injured nerve; and 6-LLLT&F1 treated injured nerve. Four or eight weeks after, sciatic nerve samples were processed for analysis. NGF expression were higher (p<0.05) four weeks after in all injured groups in comparison to Control (Med:0.8; Q1:0; Q3:55.5%area). Among them, the Injured (Med:70.7; Q1:64.4; Q3:77.5%area) showed the highest expression, and F1 (Med:17.3; Q1:14.1; Q3:21.7%area) had the lowest. At week 8, NGF expressions decreased in the injured groups. VEGF was expressed in all groups; its higher expression was observed in the injured groups 4 weeks after (Injured. Med:29.5; F1. Med:17.7 and LLLT&F1. Med:19.4%area). At week 8, a general reduction of VEGF expression was noted, remaining higher in F1 (Med:35.1; Q1.30.6; Q3.39.6%area) and LLLT&F1 (Med:18.5; Q1:16; Q3:25%area). Ultrastructural morphology revealed improvements in the treated groups; 4 weeks after, the F1 group presented greater quantity and diameter of the nerve fibers uniformly distributed. Eight weeks after, the F1 and LLLT&F1 showed similar characteristics to the non-injured groups. In summary, these results and our previous studies indicated that F1 and LLLT may favorably influence the healing of nerve crush injury. Four weeks after nerve injury F1 group showed the best results suggesting recovery acceleration; at 8th week F1 and LLLT&F1 groups presented better features and higher vascularization that could be associated with VEGF maintenance.
Collapse
Affiliation(s)
- Fernando José Dias
- Department of Integral Dentistry, CICO—Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile
- * E-mail:
| | - Valéria Paula Sassoli Fazan
- Department of Surgery and Anatomy, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Diego Pulzatto Cury
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Eduardo Borie
- Department of Integral Dentistry, CICO—Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile
| | - Ramón Fuentes
- Department of Integral Dentistry, CICO—Research Centre in Dental Sciences, Dental School, Universidad de La Frontera, Temuco, Chile
| | - Joaquim Coutinho-Netto
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ii-sei Watanabe
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Alvites R, Rita Caseiro A, Santos Pedrosa S, Vieira Branquinho M, Ronchi G, Geuna S, Varejão AS, Colette Maurício A. Peripheral nerve injury and axonotmesis: State of the art and recent advances. COGENT MEDICINE 2018. [DOI: 10.1080/2331205x.2018.1466404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto (REQUIMTE/LAQV), R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sílvia Santos Pedrosa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Giulia Ronchi
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Stefano Geuna
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Artur S.P. Varejão
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Orbassano, Turin, Italy
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Seo N, Lee SH, Ju KW, Woo J, Kim B, Kim S, Jahng JW, Lee JH. Low-frequency pulsed electromagnetic field pretreated bone marrow-derived mesenchymal stem cells promote the regeneration of crush-injured rat mental nerve. Neural Regen Res 2018; 13:145-153. [PMID: 29451219 PMCID: PMC5840980 DOI: 10.4103/1673-5374.224383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to promote the regeneration of injured peripheral nerves. Pulsed electromagnetic field (PEMF) reportedly promotes the proliferation and neuronal differentiation of BMSCs. Low-frequency PEMF can induce the neuronal differentiation of BMSCs in the absence of nerve growth factors. This study was designed to investigate the effects of low-frequency PEMF pretreatment on the proliferation and function of BMSCs and the effects of low-frequency PEMF pre-treated BMSCs on the regeneration of injured peripheral nerve using in vitro and in vivo experiments. In in vitro experiments, quantitative DNA analysis was performed to determine the proliferation of BMSCs, and reverse transcription-polymerase chain reaction was performed to detect S100 (Schwann cell marker), glial fibrillary acidic protein (astrocyte marker), and brain-derived neurotrophic factor and nerve growth factor (neurotrophic factors) mRNA expression. In the in vivo experiments, rat models of crush-injured mental nerve established using clamp method were randomly injected with low-frequency PEMF pretreated BMSCs, unpretreated BMSCs or PBS at the injury site (1 × 106 cells). DiI-labeled BMSCs injected at the injury site were counted under the fluorescence microscope to determine cell survival. One or two weeks after cell injection, functional recovery of the injured nerve was assessed using the sensory test with von Frey filaments. Two weeks after cell injection, axonal regeneration was evaluated using histomorphometric analysis and retrograde labeling of trigeminal ganglion neurons. In vitro experiment results revealed that low-frequency PEMF pretreated BMSCs proliferated faster and had greater mRNA expression of growth factors than unpretreated BMSCs. In vivo experiment results revealed that compared with injection of unpretreated BMSCs, injection of low-frequency PEMF pretreated BMSCs led to higher myelinated axon count and axon density and more DiI-labeled neurons in the trigeminal ganglia, contributing to rapider functional recovery of injured mental nerve. These findings suggest that low-frequency PEMF pretreatment is a promising approach to enhance the efficacy of cell therapy for peripheral nerve injury repair.
Collapse
Affiliation(s)
- NaRi Seo
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Seoul National University; Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Sung-Ho Lee
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital; Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Kyung Won Ju
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital; Dental Research Institute, Seoul National University, Seoul, South Korea
| | - JaeMan Woo
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul, South Korea
| | - BongJu Kim
- Clinical Translational Research Center for Dental Science (CTRC), Seoul National University Dental Hospital, Seoul, South Korea
| | - SoungMin Kim
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Seoul National University; Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul, South Korea
| | - Jeong Won Jahng
- Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Seoul National University; Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital; Dental Research Institute, Seoul National University; Clinical Translational Research Center for Dental Science (CTRC), Seoul National University Dental Hospital, Seoul, South Korea
| |
Collapse
|
8
|
Song J, Li X, Li Y, Che J, Li X, Zhao X, Chen Y, Zheng X, Yuan W. Biodegradable and biocompatible cationic polymer delivering microRNA-221/222 promotes nerve regeneration after sciatic nerve crush. Int J Nanomedicine 2017; 12:4195-4208. [PMID: 28652727 PMCID: PMC5473607 DOI: 10.2147/ijn.s132190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MicroRNA (miRNA) has great potential to treat a wide range of illnesses by regulating the expression of eukaryotic genes. Biomaterials with high transfection efficiency and low toxicity are needed to deliver miRNA to target cells. In this study, a biodegradable and biocompatible cationic polymer (PDAPEI) was synthetized from low molecular weight polyethyleneimine (PEI1.8kDa) cross-linked with 2,6-pyridinedicarboxaldehyde. PDAPEI showed a lower cytotoxicity and higher transfection efficiency than PEI25kDa in transfecting miR-221/222 into rat Schwann cells (SCs). The upregulation of miR-221/222 in SCs promoted the expression of nerve growth factor and myelin basic protein in vitro. The mouse sciatic nerve crush injury model was used to evaluate the effectiveness of PDAPEI/miR-221/222 complexes for nerve regeneration in vivo. The results of electrophysiological tests, functional assessments, and histological and immunohistochemistry analyses demonstrated that PDAPEI/miR-221/222 complexes significantly promoted nerve regeneration after sciatic nerve crush, specifically enhancing remyelination. All these results show that the use of PDAPEI to deliver miR-221/222 may provide a safe therapeutic means of treating nerve crush injury and may help to overcome the barrier of biomaterial toxicity and low efficiency often encountered during medical intervention.
Collapse
Affiliation(s)
- Jialin Song
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
- Department of Orthopedics, Shanghai University of Medicine and Health, Shanghai, Sixth People’s Hospital East Campus, Shanghai
| | - Xueyang Li
- Department of Plastic and Reconstructive Surgery, Xuzhou Medical College Affiliated Hospital, Xuzhou, Jiangsu
| | - Yingli Li
- Department of Plastic Surgery, The General Hospital of Jinan Military Command, Jinan, Shandong
- Department of Plastic Surgery, Chang Hai Hospital, Second Military Medical University
| | - Junyi Che
- School of Pharmacy, Shanghai Jiao Tong University
| | - Xiaoming Li
- School of Pharmacy, Shanghai Jiao Tong University
| | | | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University, JinShan District, Shanghai, People’s Republic of China
| | - Xianyou Zheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong University
| |
Collapse
|
9
|
Lee SH, Jin WP, Seo NR, Pang KM, Kim B, Kim SM, Lee JH. Recombinant human fibroblast growth factor-2 promotes nerve regeneration and functional recovery after mental nerve crush injury. Neural Regen Res 2017; 12:629-636. [PMID: 28553345 PMCID: PMC5436363 DOI: 10.4103/1673-5374.205104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Several studies have shown that fibroblast growth factor-2 (FGF2) can directly affect axon regeneration after peripheral nerve damage. In this study, we performed sensory tests and histological analyses to study the effect of recombinant human FGF-2 (rhFGF2) treatment on damaged mental nerves. The mental nerves of 6-week-old male Sprague-Dawley rats were crush-injured for 1 minute and then treated with 10 or 50 μg/mL rhFGF2 or PBS in crush injury area with a mini Osmotic pump. Sensory test using von Frey filaments at 1 week revealed the presence of sensory degeneration based on decreased gap score and increased difference score. However, at 2 weeks, the gap score and difference score were significantly rebounded in the mental nerve crush group treated with 10 μg/mL rhFGF2. Interestingly, treatment with 10 μg/mL rhFGF had a more obviously positive effect on the gap score than treatment with 50 μg/mL rhFGF2. In addition, retrograde neuronal tracing with Dil revealed a significant increase in nerve regeneration in the trigeminal ganglion at 2 and 4 weeks in the rhFGF2 groups (10 μg/mL and 50 μg/mL) than in the PBS group. The 10 μg/mL rhFGF2 group also showed an obviously robust regeneration in axon density in the mental nerve at 4 weeks. Our results demonstrate that 10 μg/mL rhFGF induces mental nerve regeneration and sensory recovery after mental nerve crush injury.
Collapse
Affiliation(s)
- Sung Ho Lee
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, Korea
| | - Wei-Peng Jin
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, Korea
| | - Na Ri Seo
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, Korea
| | - Kang-Mi Pang
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, Korea
| | - Bongju Kim
- Dental Life Science Research Institute, Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul, Korea
| | - Soung-Min Kim
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, Korea
| | - Jong-Ho Lee
- Dental Research Institute, Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul, Korea.,Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
10
|
Nerve regeneration techniques respecting the special characteristics of the inferior alveolar nerve. J Craniomaxillofac Surg 2016; 44:1381-6. [PMID: 27435058 DOI: 10.1016/j.jcms.2016.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/21/2016] [Accepted: 06/27/2016] [Indexed: 11/21/2022] Open
Abstract
PURPOSE The aim of this study was to examine the in situ regeneration of the inferior alveolar nerve (IAN) in its bony channel, using autologous tissue in combination with a recombinant human nerve growth factor (rhNGF). MATERIALS AND METHODS A total of 20 New Zealand rabbits were randomly divided into five groups. Following dissection of the IAN, the animals underwent reconstruction either with muscle tissue (groups 1 and 2) or with fat tissue (groups 3 and 4). In group 5 (control), the dissected nerve was resected and reconstructed by placement of the reversed autologous segment. After 2 and 4 weeks, 1 mL rhNGF was locally injected in groups 1 and 3. Nerve function was monitored by measuring the jaw-opening reflex using electromyography for a period of 24 weeks. RESULTS Regeneration of the nerve was achieved in all groups, but preoperative threshold values were not achieved. Comparing the experimental groups to the control, there was a significant difference in favor of the autologous nerve reconstruction. Differences between the experimental groups remained statistically not significant. CONCLUSION Regeneration of the IAN with autologous tissue is possible, but without achieving preoperative thresholds. Additional injection of a growth factor seems to improve the speed of regeneration for fat and muscle grafts.
Collapse
|
11
|
Hei WH, Kim S, Park JC, Seo YK, Kim SM, Jahng JW, Lee JH. Schwann-like cells differentiated from human dental pulp stem cells combined with a pulsed electromagnetic field can improve peripheral nerve regeneration. Bioelectromagnetics 2016; 37:163-174. [PMID: 26991921 DOI: 10.1002/bem.21966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 02/25/2016] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to investigate the effect of Schwann-like cells combined with pulsed electromagnetic field (PEMF) on peripheral nerve regeneration. Schwann-like cells were derived from human dental pulp stem cells (hDPSCs) and verified with CD104, S100, glial fibrillary acidic protein (GFAP), laminin, and P75NTR immunocytochemistry. Gene expression of P75NTR and S100 were analyzed. Male Sprague-Dawley rats (200-250g, 6-week-old) were divided into seven groups (n = 10 each): control, sham, PEMF, hDPSCs, hDPSCs + PEMF, Schwann-like cells, Schwann-like cells + PEMF. Cells were transplanted (1 × 106 /10µl/rat) at crush-injury site or combined with PEMF (50 Hz, 1 h/day, 1 mT). Nerve regeneration was evaluated with functional test, histomorphometry and retrograde labelled neurons. Schwann-like cells expressed CD104, S100, GFAP, laminin, and p75 neurotrophin receptor (P75NTR ). P75NTR and S100 mRNA expression was highest in Schwann-like cells + PEMF group, which also showed increased Difference and Gap scores. Axons and retrograde labeled neurons increased in all treatment groups. Schwann-like cells, hDPSCs with or without PEMF, and PEMF only improved peripheral nerve regeneration. Schwann-like cells + PEMF showed highest regeneration ability; PEMF has additive effect on hDPSCs, Schwann-like cell in vitro and nerve regeneration ability after transplantation in vivo. Bioelectromagnetics. 37:163-174, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei-Hong Hei
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea.,Key Laboratory of Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Soochan Kim
- Graduate School of Bio and Information Technology, Hankyong National University, Anseong-si, Kyonggi-do, Seoul, Korea
| | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Young-Kwon Seo
- Dongguk Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul, Korea
| | - Soung-Min Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jeong Won Jahng
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea.,Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
12
|
Li BH, Yang K, Wang X. Biodegradable magnesium wire promotes regeneration of compressed sciatic nerves. Neural Regen Res 2016; 11:2012-2017. [PMID: 28197200 PMCID: PMC5270442 DOI: 10.4103/1673-5374.197146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Magnesium (Mg) wire has been shown to be biodegradable and have anti-inflammatory properties. It can induce Schwann cells to secrete nerve growth factor and promote the regeneration of nerve axons after central nervous system injury. We hypothesized that biodegradable Mg wire may enhance compressed peripheral nerve regeneration. A rat acute sciatic nerve compression model was made, and AZ31 Mg wire (3 mm diameter; 8 mm length) bridged at both ends of the nerve. Our results demonstrate that sciatic functional index, nerve growth factor, p75 neurotrophin receptor, and tyrosine receptor kinase A mRNA expression are increased by Mg wire in Mg model. The numbers of cross section nerve fibers and regenerating axons were also increased. Sciatic nerve function was improved and the myelinated axon number was increased in injured sciatic nerve following Mg treatment. Immunofluorescence histopathology showed that there were increased vigorous axonal regeneration and myelin sheath coverage in injured sciatic nerve after Mg treatment. Our findings confirm that biodegradable Mg wire can promote the regeneration of acute compressed sciatic nerves.
Collapse
Affiliation(s)
- Bo-Han Li
- Department of Oral & Maxillofacial Surgery, The General Hospital of the People's Liberation Army, Beijing, China; Department of Oral & Maxillofacial Surgery, Binzhou Medical University, Yantai, Shandong Province, China
| | - Ke Yang
- Metal Research Institute of Chinese Academy of Sciences, Shenyang, Liaoning Province, China
| | - Xiao Wang
- Department of Oral & Maxillofacial Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
13
|
Hei WH, Byun SH, Kim JS, Kim S, Seo YK, Park JC, Kim SM, Jahng JW, Lee JH. Effects of electromagnetic field (PEMF) exposure at different frequency and duration on the peripheral nerve regeneration: in vitro and in vivo study. Int J Neurosci 2015; 126:739-48. [PMID: 26010211 DOI: 10.3109/00207454.2015.1054032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The purpose was to clarify the influence of frequency and exposure time of pulsed electromagnetic fields (PEMF) on the peripheral nerve regeneration. MATERIALS AND METHODS Immortalized rat Schwann cells (iSCs) (1 × 10(2)/well) were exposed at four different conditions in 1 mT (50 Hz 1 h/d, 50 Hz 12 h/d, 150 Hz 1 h/d and 150 Hz 12h/d). Cell proliferation, mRNA expression of S100 and brain-derived neurotrophic factor (BDNF) were analyzed. Sprague-Dawley rats (200-250 g) were divided into six groups (n = 10 each): control, sham, 50 Hz 1 h/d, 50 Hz 12 h/d, 150 Hz 1 h/d and 150 Hz 12 Hr/d. Mental nerve was crush-injured and exposed at four different conditions in 1 mT (50 Hz 1 Hr/d, 50 Hz 12 Hr/d, 150 Hz 1 h/d and 150 Hz 12 h/d). Nerve regeneration was evaluated with functional test, histomorphometry and retrograde labeling of trigeminal ganglion. RESULTS iSCs proliferation with 50 Hz, 1 h/d was increased from fourth to seventh day; mRNA expression of S100 and BDNF was significantly increased at the same condition from first week to third week (p < .05 vs. control); difference score was increased at the second and third week, and gap score was increased at the third under 50 Hz 1 h PEMF compared with control while other conditions showed no statistical meaning. Axon counts and retrograde labeled neurons were significantly increased under PEMF of four different conditions compared with control. Although there was no statistical difference, 50 Hz, 1 h PEMF showed highest regeneration ability than other conditions. CONCLUSION PEMF enhanced peripheral nerve regeneration, and that it may be due to cell proliferation and increase in BDNF and S100 gene expression.
Collapse
Affiliation(s)
- Wei-Hong Hei
- a Department of Oral and Maxillofacial Surgery, School of Dentistry , Seoul National University , Seoul , Korea
| | - Soo-Hwan Byun
- a Department of Oral and Maxillofacial Surgery, School of Dentistry , Seoul National University , Seoul , Korea
| | - Jong-Sik Kim
- b Department of Oral and Maxillofacial Surgery, Hallum Medical School , Sacred Kangdong hospital , Seoul , Korea
| | - Soochan Kim
- c Graduate School of Bio & Information Technology , Hankyong National University , Anseong-si, Kyonggi-do , Seoul , Korea
| | - Young-Kwon Seo
- d Research Institute of Biotechnology , Dongguk University , Seoul , Korea
| | - Joo-Cheol Park
- e Department of Oral Histology-Developmental Biology, School of Dentistry , Seoul National University , Seoul , Korea
| | - Soung-Min Kim
- a Department of Oral and Maxillofacial Surgery, School of Dentistry , Seoul National University , Seoul , Korea
| | - Jeong Won Jahng
- f Dental Research Institute , Seoul National University , Seoul , Korea
| | - Jong-Ho Lee
- a Department of Oral and Maxillofacial Surgery, School of Dentistry , Seoul National University , Seoul , Korea.,f Dental Research Institute , Seoul National University , Seoul , Korea
| |
Collapse
|
14
|
Dias FJ, Issa JPM, Coutinho-Netto J, Fazan VPS, Sousa LG, Iyomasa MM, Papa PC, Watanabe IS. Morphometric and high resolution scanning electron microscopy analysis of low-level laser therapy and latex protein (Hevea brasiliensis) administration following a crush injury of the sciatic nerve in rats. J Neurol Sci 2015; 349:129-37. [PMID: 25619570 DOI: 10.1016/j.jns.2014.12.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/03/2014] [Accepted: 12/29/2014] [Indexed: 12/24/2022]
Abstract
This study evaluated the effect of low-level laser therapy (LLLT; 15 J/cm(2)) and a latex protein (F1) on a crush injury of the sciatic (ischiadicus) nerve. Seventy-two rats (male, 250 g) were divided into 6 groups: CG, control; EG, exposed nerve; IG, injured nerve without treatment; LG, injured nerve with LLLT; HG, injured nerve with F1; and LHG, injured nerve with LLLT and F1. After 4 or 8 weeks, the animals were euthanized and samples of the sciatic nerve were collected for morphometric and high-resolution scanning electron microscopy (HRSEM) analysis. After 4 weeks, the morphometry revealed improvements in the treated animals, and the HG appeared to be the most similar to the CG; after 8 weeks, the injured groups showed improvements compared to the previous period, and the results of the treatment groups were more similar to one another. At HRSEM after 4 weeks, the treated groups were similar and showed improvement compared to the IG; after 8 weeks, the LHG and HG had the best results. In conclusion, the treatments resulted in improvement after the nerve injury, and this recovery was time-dependent. In addition, the use of the F1 resulted in the best morphometric and ultrastructural findings.
Collapse
Affiliation(s)
- Fernando J Dias
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - João Paulo M Issa
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto , Brazil
| | | | - Valéria P S Fazan
- Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gustavo Sousa
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto , Brazil
| | - Mamie M Iyomasa
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto , Brazil
| | - Paula C Papa
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ii-Sei Watanabe
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
15
|
Barreiros VCP, Dias FJ, Iyomasa MM, Coutinho-Netto J, de Sousa LG, Fazan VPS, Antunes RDS, Watanabe IS, Issa JPM. Morphological and morphometric analyses of crushed sciatic nerves after application of a purified protein from natural latex and hyaluronic acid hydrogel. Growth Factors 2014; 32:164-70. [PMID: 25257251 DOI: 10.3109/08977194.2014.952727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hyaluronic acid hydrogels (HAHs) have been used as a carrier of substances and factors in the repair of nervous tissue. Natural latex protein (Hevea brasiliensis, F1) has shown positive effects in treating various types of tissues, including peripheral nerves. This study evaluated the F1 associated with a HAH in a controlled crush injury (axonotmesis) of the sciatic nerve in Wistar rats. The samples were photomicrographed for morphometric and quantitative analyzes using ImageJ 1.47k software (NIH, Bethesda, MD). Morphological, quantitative (myelin area/nerve area ratio and capillary density) and morphometric (minimum nerve fiber diameter, G-Ratio) data revealed an improvement in the recovery of the sciatic nerve with the application of HAH and the combination of HAH and F1 after 4 and 8 weeks of nerve injury. The most efficacious results were observed with the combination of both substances, F1 and HAH, revealing the regenerative capacity of this new biomaterial, which was hardly tested on nerve tissue.
Collapse
|
16
|
Li B, Jung HJ, Kim SM, Kim MJ, Jahng JW, Lee JH. Human periodontal ligament stem cells repair mental nerve injury. Neural Regen Res 2014; 8:2827-37. [PMID: 25206604 PMCID: PMC4146018 DOI: 10.3969/j.issn.1673-5374.2013.30.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/26/2013] [Indexed: 01/31/2023] Open
Abstract
Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous Schwann cells in promoting the regeneration of injured peripheral nerve. To validate this hypothesis, human periodontal ligament stem cells (1 × 106) were injected into the crush-injured left mental nerve in rats. Simultaneously, autologous Schwann cells (1 × 106) and PBS were also injected as controls. Real-time reverse transcriptase polymerase chain reaction showed that at 5 days after injection, mRNA expression of low affinity nerve growth factor receptor was significantaly increased in the left trigeminal ganglion of rats with mental nerve injury. Sensory tests, histomorphometric evaluation and retrograde labeling demonstrated that at 2 and 4 weeks after injection, sensory function was significantly improved, the numbers of retrograde labeled sensory neurons and myelinated axons were significantly increased, and human periodontal ligament stem cells and autologous Schwann cells exhibited similar therapeutic effects. These findings suggest that transplantation of human periodontal ligament stem cells show a potential value in repair of mental nerve injury.
Collapse
Affiliation(s)
- Bohan Li
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Binzhou Medical College, Binzhou, Shandong Province, China
| | - Hun-Jong Jung
- Department of Occupation and Environment, Konkuk Postgraduate Medical School, Choong-Ju, Korea
| | - Soung-Min Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
| | - Myung-Jin Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jeong Won Jahng
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea ; Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
17
|
Binan L, Ajji A, De Crescenzo G, Jolicoeur M. Approaches for Neural Tissue Regeneration. Stem Cell Rev Rep 2013; 10:44-59. [DOI: 10.1007/s12015-013-9474-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|