1
|
Varela-López A, Battino M, Navarro-Hortal MD, Giampieri F, Forbes-Hernández TY, Romero-Márquez JM, Collado R, Quiles JL. An update on the mechanisms related to cell death and toxicity of doxorubicin and the protective role of nutrients. Food Chem Toxicol 2019; 134:110834. [PMID: 31577924 DOI: 10.1016/j.fct.2019.110834] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/10/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOX), is a very effective chemotherapeutic agent against cancer whose clinical use is limited by toxicity. Different strategies have been proposed to attenuate toxicity, including combined therapy with bioactive compounds. This review update mechanisms of action and toxicity of doxorubicin and the role of nutrients like vitamins (A, C, E), minerals (selenium) and n-3 polyunsaturated fatty acids. Protective activities against DOX toxicity in liver, kidney, skin, bone marrow, testicles or brain have been reported, but these have not been evaluated for all of the reviewed nutrients. In most cases oxidation-related effects were present either, by reducing ROS levels and/or increasing antioxidant defenses. Antiapoptotic and anti-inflammatory mechanisms are also commonly reported. In some cases, interferences with autophagy and calcium homeostasis also have shown to be affected. Notwithstanding, there is a wide variety in duration and doses of treatment tested for both, compounds and DOX, which make difficult to compare the results of the studies. In spite of the reduction of DOX cardiotoxicity in health models, DOX anti-cancer activity in cancer cell lines or xenograft models usually did not result compromised when this has been evaluated. Importantly, clinical studies are needed to confirm all the observed effects.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche Ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica Delle Marche, 60131, Ancona, Italy; Nutrition and Food Science Group. Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - María D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche Ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica Delle Marche, 60131, Ancona, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group. Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | - José M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain
| | - Ricardo Collado
- Complejo Hospitalario Universitario de Cáceres, Cáceres, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
2
|
Lu Y, Li H, Geng Y. Analysis of the Effects of δ-Tocopherol on RAW264.7 and K562 Cells Based on 1H NMR Metabonomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1039-1046. [PMID: 29313349 DOI: 10.1021/acs.jafc.7b04667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
δ-Tocopherol (δ-TOH) is a form of vitamin E with higher bioactivity. In this study, we studied the bioactivity of δ-TOH using the IC50 of δ-TOH on RAW264.7 (80 μM) and K562 (110 μM) cells. We compared the differential metabolites from the cell lines with and without δ-TOH treatment by 1H NMR metabonomics analysis. It was found that δ-TOH affected the protein biosynthesis, betaine metabolism, and urea cycle in various ways in both cell lines. Metabolic levels of the cell lines were changed after treatment with δ-TOH as differential metabolites were produced. The betaine level in RAW264.7 cells was reduced significantly, while the l-lactic acid level in K562 cells was significantly enhanced. The metabolic changes might contribute to the switch of the respiration pattern from aerobic respiration to anaerobic respiration in K562 cells. These results are helpful in further understanding the subtoxicity of δ-TOH.
Collapse
Affiliation(s)
- Yang Lu
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University , Jinan 250014, China
| | - Hui Li
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University , Jinan 250014, China
| | - Yue Geng
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University , Jinan 250014, China
| |
Collapse
|
3
|
Ahmed S, Finkelstein JL, Stewart AM, Kenneth J, Polhemus ME, Endy TP, Cardenas W, Mehta S. Micronutrients and dengue. Am J Trop Med Hyg 2014; 91:1049-56. [PMID: 25200269 DOI: 10.4269/ajtmh.14-0142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dengue virus infection is the most widespread mosquito-borne viral infection in humans and has emerged as a serious global health challenge. In the absence of effective treatment and vaccine, host factors including nutritional status, which may alter disease progression, need investigation. The interplay between nutrition and other infections is well-established, and modulation of nutritional status often presents a simple low-cost method of interrupting transmission, reducing susceptibility, and/or ameliorating disease severity. This review examines the evidence on the role of micronutrients in dengue virus infection. We found critical issues and often inconsistent results across studies; this finding along with the lack of sufficient literature in this field have limited our ability to make any recommendations. However, vitamins D and E have shown promise in small supplementation trials. In summary, the role of micronutrients in dengue virus infection is an exciting research area and needs to be examined in well-designed studies with larger samples.
Collapse
Affiliation(s)
- Sundus Ahmed
- Division of Nutritional Sciences, Cornell University, Ithaca, New York; Center for Global Health and Translational Science, State University of New York Upstate Medical University, Syracuse, New York; Division of Infectious Diseases, St. John's Research Institute, Bangalore, India; Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Julia L Finkelstein
- Division of Nutritional Sciences, Cornell University, Ithaca, New York; Center for Global Health and Translational Science, State University of New York Upstate Medical University, Syracuse, New York; Division of Infectious Diseases, St. John's Research Institute, Bangalore, India; Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Anna M Stewart
- Division of Nutritional Sciences, Cornell University, Ithaca, New York; Center for Global Health and Translational Science, State University of New York Upstate Medical University, Syracuse, New York; Division of Infectious Diseases, St. John's Research Institute, Bangalore, India; Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - John Kenneth
- Division of Nutritional Sciences, Cornell University, Ithaca, New York; Center for Global Health and Translational Science, State University of New York Upstate Medical University, Syracuse, New York; Division of Infectious Diseases, St. John's Research Institute, Bangalore, India; Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Mark E Polhemus
- Division of Nutritional Sciences, Cornell University, Ithaca, New York; Center for Global Health and Translational Science, State University of New York Upstate Medical University, Syracuse, New York; Division of Infectious Diseases, St. John's Research Institute, Bangalore, India; Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Timothy P Endy
- Division of Nutritional Sciences, Cornell University, Ithaca, New York; Center for Global Health and Translational Science, State University of New York Upstate Medical University, Syracuse, New York; Division of Infectious Diseases, St. John's Research Institute, Bangalore, India; Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Washington Cardenas
- Division of Nutritional Sciences, Cornell University, Ithaca, New York; Center for Global Health and Translational Science, State University of New York Upstate Medical University, Syracuse, New York; Division of Infectious Diseases, St. John's Research Institute, Bangalore, India; Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, New York; Center for Global Health and Translational Science, State University of New York Upstate Medical University, Syracuse, New York; Division of Infectious Diseases, St. John's Research Institute, Bangalore, India; Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| |
Collapse
|
6
|
Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Sanchez-Rovira P, Ramirez-Tortosa MC. New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidant nutrients. Food Chem Toxicol 2010; 48:1425-38. [PMID: 20385199 DOI: 10.1016/j.fct.2010.04.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 03/29/2010] [Accepted: 04/06/2010] [Indexed: 12/29/2022]
Abstract
Anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin) are currently the most effective group of anti-neoplastic drugs used in clinical practice. Of these, doxorubicin (also called adriamycin) is a key chemotherapeutic agent in cancer treatment, although its use is limited as a consequence of the chronic and acute toxicity associated with this drug. The molecular mechanisms of doxorubicin account for both the anti-cancer and the toxic side effects. Many antioxidants have been assayed, with positive or negative results, to prevent the toxicity of doxorubicin. The present review has two main goals: (1) to report the latest findings regarding the molecular mechanisms of doxorubicin toxicity; (2) to update our understanding of the role of natural antioxidants in preventive therapy against doxorubicin-induced toxicity. This review provides new evidence for the chemoprevention of doxorubicin toxicity, making use of natural antioxidants - in particular vitamin E, vitamin C, coenzyme Q, carotenoids, vitamin A, flavonoids, polyphenol, resveratrol, antioxidant from virgin olive oil and selenium - and offers new insights into the molecular mechanisms of doxorubicin toxicity with respect to DNA damage, free radicals and other parameters.
Collapse
Affiliation(s)
- Sergio Granados-Principal
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology José Mataix Verdú, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
7
|
Cytological and biochemical effects of St. John's Wort supplement (a complex mixture of St. John's Wort, Rosemary and Spirulina) on somatic and germ cells of Swiss Albino mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2009; 5:408-17. [PMID: 19151436 PMCID: PMC3700001 DOI: 10.3390/ijerph5050408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Commercially available St. John’s wort supplement (SJWS) composed of an herbal mixture of St. John’s Wort (SJW), Rosemary (RM) and Spirulina (SP) is used as a dietary supplement for the treatment of psychiatric disorders. Although the minor ingredients, (RM and SP) are proven antioxidants, their quantity is quite insignificant as compared to the SJW, which is the major ingredient. Most of the toxic effects of SJWS are attributed to the main constituents of SJW which differ due to the influence of light (hypericin) and variations in temperature above freezing point (hyperforin). However, there are no reports on toxicity of SJWS maintained at room temperature in pharmacies and supermarkets. In view of the folkloric importance, immense (prescribed or unprescribed) use and a paucity of literature on SJWS, it was found worthwhile to (1) determine the genotoxic effects of SJWS in somatic and germ cells of mice and (2) investigate the role of biochemical changes, as a possible mechanism. The protocol included the oral treatment of mice with different doses (380, 760 and 1520 mg/kg/day) of SJWS for 7 days. The following experiments were conducted: (i) cytological studies on micronucleus test, (ii) cytogenetic analysis for meiotic chromosomes, (iii) cytological analysis of spermatozoa abnormalities, (iv) quantification of proteins and nucleic acids in hepatic and testicular cells and (v) estimation of malondialdehyde (MDA) and nonprotein sulfhydryl (NP-SH) in hepatic and testicular cells. The treatment increased the frequency of micronuclei in polychromatic erythrocytes (PCE) in the femora. It caused aberrations in chromosomes of testes and induced spermatozoa abnormalities. These changes might be attributed to the epigenetic mechanisms as revealed by an increase in concentrations of MDA and depletion of nucleic acids and NP-SH levels in both hepatic and testicular cells observed in the present study. Since, the samples of SJWS used were not drawn from extremities of light and temperature; the observed effect might not be related to the main constituents of SJW. However, these changes might be ascribed to the combined effect of terpenes, tannins, quercetin and flavonoids present in SJW.
Collapse
|