1
|
Torresan S, de Scordilli M, Bortolot M, Di Nardo P, Foltran L, Fumagalli A, Guardascione M, Ongaro E, Puglisi F. Liquid biopsy in colorectal cancer: Onward and upward. Crit Rev Oncol Hematol 2024; 194:104242. [PMID: 38128627 DOI: 10.1016/j.critrevonc.2023.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide. In recent years, liquid biopsy has emerged as one of the most interesting areas of research in oncology, leading to innovative trials and practical changes in all aspects of CRC management. RNAs and cell free DNA (cfDNA) methylation are emerging as promising biomarkers for early diagnosis. Post-surgical circulating tumour DNA (ctDNA) can aid in evaluating minimal residual disease and personalising adjuvant treatment. In rectal cancer, ctDNA could improve response assessment to neoadjuvant therapy and risk stratification, especially in the era of organ-preservation trials. In the advanced setting, ctDNA analysis offers the opportunity to monitor treatment response and identify driver and resistance mutations more comprehensively than traditional tissue analysis, providing prognostic and predictive information. The aim of this review is to provide a detailed overview of the clinical applications and future perspectives of liquid biopsy in CRC.
Collapse
Affiliation(s)
- Sara Torresan
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Marco de Scordilli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy.
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Paola Di Nardo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Luisa Foltran
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Arianna Fumagalli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michela Guardascione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Elena Ongaro
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
2
|
Zhu L, Zhao D, Xu L, Sun M, Song Y, Liu M, Li M, Zhang J. A Fluorescent "Turn-On" Clutch Probe for Plasma Cell-Free DNA Identification from Lung Cancer Patients. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1262. [PMID: 35457970 PMCID: PMC9027387 DOI: 10.3390/nano12081262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/19/2022]
Abstract
Early diagnosis of cancer is of paramount significance for the therapeutic intervention of cancers. Although the detection of circulating cell-free DNA (cfDNA) has emerged as a promising, minimally invasive approach for early cancer diagnosis, there is an urgent need to develop a highly sensitive and rapid method to precisely identify plasma cfDNA from clinical samples. Herein, we report a robust fluorescent "turn-on" clutch probe based on non-emissive QDs-Ru complexes to rapidly recognize EGFR gene mutation in plasma cfDNA from lung cancer patients. In this system, the initially quenched emission of QDs is recovered while the red emission of Ru(II) complexes is switched on. This is because the Ru(II) complexes can specifically intercalate into the double-stranded DNA (dsDNA) to form Ru-dsDNA complexes and simultaneously liberate free QDs from the QDs-Ru complexes, which leads to the occurrence of an overlaid red fluorescence. In short, the fluorescent "turn-on" clutch probe offers a specific, rapid, and sensitive paradigm for the recognition of plasma cfDNA biomarkers from clinical samples, providing a convenient and low-cost approach for the early diagnosis of cancer and other gene-mutated diseases.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Dongxu Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Lixin Xu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Meng Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Yueyue Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| | - Mingrui Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Menglin Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China; (L.Z.); (D.Z.); (L.X.); (M.S.); (Y.S.)
| |
Collapse
|
3
|
Evaluation of a Targeted Next-Generation Sequencing Panel for the Non-Invasive Detection of Variants in Circulating DNA of Colorectal Cancer. J Clin Med 2021; 10:jcm10194487. [PMID: 34640513 PMCID: PMC8509146 DOI: 10.3390/jcm10194487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular profiling of circulating cell-free DNA (cfDNA) has shown utility for the management of colorectal cancer (CRC). TruSight Tumor 170 (TST170) is a next-generation sequencing (NGS) panel that covers 170 cancer-related genes, including KRAS, which is a key driver gene in CRC. We evaluated the capacity of TST170 to detect gene variants in cfDNA from a retrospective cohort of 20 metastatic CRC patients with known KRAS variants in tumor tissue and in cfDNA previously analyzed by pyrosequencing and BEAMing, respectively. The cfDNA of most of the patients (95%) was successfully sequenced. We frequently detected variants with clinical significance in KRAS (79%, 15/19) and PIK3CA (26%, 5/19) genes. Variants with potential clinical significance were also identified in another 27 cancer genes, such as APC. The type of KRAS variant detected in cfDNA by TST170 showed high concordance with those detected in tumor tissue (77%), and very high concordance with cfDNA analyzed by BEAMing (94%). The variant allele fractions for KRAS obtained in cfDNA by TST170 and BEAMing correlated strongly. This proof-of-principle study indicates that targeted NGS analysis of cfDNA with TST170 could be useful for non-invasive detection of gene variants in metastatic CRC patients, providing an assay that could be easily implemented for detecting somatic alterations in the clinic.
Collapse
|
4
|
Cell-Free DNA Analysis by Whole-Exome Sequencing for Hepatocellular Carcinoma: A Pilot Study in Thailand. Cancers (Basel) 2021; 13:cancers13092229. [PMID: 34066484 PMCID: PMC8125351 DOI: 10.3390/cancers13092229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Liquid biopsy for cell-free DNA (cfDNA) is a non-invasive technique to characterize the genetic profile of a tumor. Despite being a valuable tool, there is no mutational profile of cfDNA from hepatocellular carcinoma (HCC) in patients from Thailand, where HCC is prevalent. The present study aimed to demonstrate the utility of using whole-exome sequencing of cfDNA to define the somatic mutation profiles of HCC in Thai patients who underwent nonoperative therapies. The level of cfDNA was higher in HCC patients than in chronic hepatitis patients. Single nucleotide variations were present in somatic genes in cfDNA, including in ZNF814, HRNR, ZNF492, ADAMTS12, FLG, OBSCN, TP53, and TTN. The co-occurrence of HRNR and TTN mutations in cfDNA was associated with shorter overall survival. These findings indicate that the mutational profiles of cfDNA reflected those of HCC tissue, and cfDNA could serve as a useful biomarker for diagnosis and prognosis in HCC patients. Abstract Cell-free DNA (cfDNA) has been used as a non-invasive biomarker for detecting cancer-specific mutations. However, the mutational profile of cfDNA in Thai patients with hepatocellular carcinoma (HCC) has not been investigated. Here, we demonstrated the utility of using whole-exome sequencing (WES) of cfDNA to define the somatic mutation profiles of HCC in Thai patients. The comprehensive profile of cfDNA was determined with WES to identify variants in matched cfDNA and germline DNA from 30 HCC patients in Thailand who underwent nonoperative therapies. The level of cfDNA was higher in HCC patients compared with chronic hepatitis patients (p-value < 0.001). Single nucleotide variants were present in somatic genes in cfDNA, including in ZNF814 (27%), HRNR (20%), ZNF492 (20%), ADAMTS12 (17%), FLG (17%), OBSCN (17%), TP53 (17%), and TTN (17%). These same mutations were matched to HCC mutation data from The Cancer Genome Atlas (TCGA) and a previous Thai HCC study. The co-occurrence of HRNR and TTN mutations in cfDNA was associated with shorter overall survival in HCC patients (hazard ratio = 1.60, p-value = 0.0196). These findings indicate that the mutational profile of cfDNA accurately reflected that of HCC tissue and suggest that cfDNA could serve as a useful biomarker for diagnosis and prognosis in Thai HCC patients. In addition, we demonstrated the use of the pocket-sized sequencer of Oxford Nanopore Technology to detect copy-number variants in HCC tissues that could be applied for onsite clinical detection/monitoring of HCC.
Collapse
|
5
|
Bach S, Sluiter NR, Beagan JJ, Mekke JM, Ket JCF, van Grieken NCT, Steenbergen RDM, Ylstra B, Kazemier G, Tuynman JB. Circulating Tumor DNA Analysis: Clinical Implications for Colorectal Cancer Patients. A Systematic Review. JNCI Cancer Spectr 2019; 3:pkz042. [PMID: 32328554 PMCID: PMC7050033 DOI: 10.1093/jncics/pkz042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background Liquid biopsies could improve diagnosis, prognostication, and monitoring of colorectal cancer (CRC). Mutation, chromosomal copy number alteration, and methylation analysis in circulating tumor DNA (ctDNA) from plasma or serum has gained great interest. However, the literature is inconsistent on preferred candidate markers, hampering a clear direction for further studies and clinical translation. This review assessed the potential of ctDNA analysis for clinical utility. Methods A systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines was conducted up to December 3, 2018, followed by methodological quality assessment. Primary endpoints were accuracy for detection, prognostication, and monitoring. Results Eighty-four studies were included. For CRC detection, sensitivity was 75% using ctDNA mutation analysis and up to 96% using copy number analysis. Septin 9 (SEPT9) hypermethylation analysis showed sensitivities of 100% and specificities of 97%. Regarding prognostication, ctDNA KRAS mutations were associated with oncological outcome and could predict response to anti-epidermal growth factor receptor therapy. For monitoring, sequential ctDNA KRAS mutation analysis showed promise for detection of relapses or therapy resistance. Conclusions This comprehensive overview of ctDNA candidate markers demonstrates SEPT9 methylation analysis to be promising for CRC detection, and KRAS mutation analysis could assist in prognostication and monitoring. Prospective evaluation of marker panels in clinical decision making should bring ctDNA analysis into practice.
Collapse
Affiliation(s)
- Sander Bach
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Nina R Sluiter
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Jamie J Beagan
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Joost M Mekke
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Johannes C F Ket
- Medical Information Specialist/Literature Researcher Medical Library, Amsterdam UMC, Vrije Universiteit Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Nicole C T van Grieken
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Renske D M Steenbergen
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Bauke Ylstra
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| | - Jurriaan B Tuynman
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Howell J, Atkinson SR, Pinato DJ, Knapp S, Ward C, Minisini R, Burlone ME, Leutner M, Pirisi M, Büttner R, Khan SA, Thursz M, Odenthal M, Sharma R. Identification of mutations in circulating cell-free tumour DNA as a biomarker in hepatocellular carcinoma. Eur J Cancer 2019; 116:56-66. [PMID: 31173963 DOI: 10.1016/j.ejca.2019.04.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is increasing globally. Prognostic biomarkers are urgently needed to guide treatment and reduce mortality. Tumour-derived circulating cell-free DNA (ctDNA) is a novel, minimally invasive means of determining genetic alterations in cancer. We evaluate the accuracy of ctDNA as a biomarker in HCC. METHODS Plasma cell-free DNA, matched germline DNA and HCC tissue DNA were isolated from patients with HCC (n = 51) and liver cirrhosis (n = 10). Targeted, multiplex polymerase chain reaction ultra-deep sequencing was performed using a liver cancer-specific primer panel for genes ARID1A, ARID2, AXIN1, ATM, CTNNB1, HNF1A and TP53. Concordance of mutations in plasma ctDNA and HCC tissue DNA was determined, and associations with clinical outcomes were analysed. RESULTS Plasma cell-free DNA was detected in all samples. Lower plasma cell-free DNA levels were seen in Barcelona Clinic Liver Cancer (BCLC A compared with BCLC stage B/C/D (median concentration 122.89 ng/mL versus 168.21 ng/mL, p = 0.041). 29 mutations in the eight genes (21 unique mutations) were detected in 18/51 patients (35%), median 1.5 mutations per patient (interquartile range 1-2). Mutations were most frequently detected in ARID1A (11.7%), followed by CTNNB1 (7.8%) and TP53 (7.8%). In patients with matched tissue DNA, all mutations detected in plasma ctDNA detected were confirmed in HCC DNA; however, 71% of patients had mutations identified in HCC tissue DNA that were not detected in matched ctDNA. CONCLUSION ctDNA is quantifiable across all HCC stages and allows detection of mutations in key driver genes of hepatic carcinogenesis. This study demonstrates high specificity but low sensitivity of plasma ctDNA for detecting mutations in matched HCC tissue.
Collapse
Affiliation(s)
- Jessica Howell
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK; Centre for Population Health, Macfarlane-Burnet Institute, 85 Commercial Rd, Melbourne, 3004, Australia; Department of Medicine, University of Melbourne, St Vincent's Hospital, 55 Victoria Pde, Fitzroy, 3065, Melbourne, Australia; Department of Epidemiology and Preventive Medicine, Monash University, 85 Commercial Rd, Melbourne 3004, Australia
| | - Stephen R Atkinson
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Susanne Knapp
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK; Department of Women's Cancer, Institute for Women's Health, University College London, 72 Huntley St, London, WC1C6DD, UK
| | - Caroline Ward
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Rosalba Minisini
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Michela E Burlone
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Monica Leutner
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università degli Studi del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Reinhard Büttner
- Institute for Pathology, University Hospital of Cologne and Center of Integrative Oncology, University Clinic of Cologne and Bonn, Kerpener Str. 62, 50924, Cologne, Germany; The Center of Molecular Medicine, The Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Shahid A Khan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Mark Thursz
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK
| | - Margarete Odenthal
- Institute for Pathology, University Hospital of Cologne and Center of Integrative Oncology, University Clinic of Cologne and Bonn, Kerpener Str. 62, 50924, Cologne, Germany; The Center of Molecular Medicine, The Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS, London, UK.
| |
Collapse
|
7
|
Ossandon MR, Agrawal L, Bernhard EJ, Conley BA, Dey SM, Divi RL, Guan P, Lively TG, McKee TC, Sorg BS, Tricoli JV. Circulating Tumor DNA Assays in Clinical Cancer Research. J Natl Cancer Inst 2018; 110:929-934. [PMID: 29931312 PMCID: PMC6136923 DOI: 10.1093/jnci/djy105] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/13/2018] [Accepted: 05/11/2018] [Indexed: 01/01/2023] Open
Abstract
The importance of circulating free DNA (cfDNA) in cancer clinical research was recognized in 1994 when a mutated RAS gene fragment was detected in a patient's blood sample. Up to 1% of the total circulating DNA in patients with cancer is circulating tumor DNA (ctDNA) that originates from tumor cells. As ctDNA is rapidly cleared from the blood stream and can be obtained by minimally invasive methods, it can be used as a dynamic cancer biomarker for cancer early detection, diagnosis, and treatment monitoring. Despite the potential for clinical use, few ctDNA assays have been cleared or approved by the US Food and Drug Administration. As tools for clinical and translational research, current ctDNA assays face some challenges, and more research is needed to advance use of these assays. On September 29-30, 2016, the Division of Cancer Treatment and Diagnosis at the National Cancer Institute convened a workshop entitled "Circulating Tumor DNA Assays in Clinical Cancer Research" to garner input from industry experts, academia, and government research and regulatory agencies to understand and promote the translation of ctDNA assays to clinical research, with potential to advance to use in clinical practice. This Commentary presents the topics of the workshop covered in the presentations and points made in the discussions that followed: 1) background on ctDNA, 2) potential clinical utility of ctDNA assays, 3) assay technology, 4) assay clinical and analytical validation, and 5) industry perspectives. Additional relevant information that has come to light since the workshop has been included.
Collapse
Affiliation(s)
- Miguel R Ossandon
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lokesh Agrawal
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Eric J Bernhard
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Barbara A Conley
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sumana M Dey
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rao L Divi
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ping Guan
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tracy G Lively
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tawnya C McKee
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Brian S Sorg
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - James V Tricoli
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Khatami F, Tavangar SM. Circulating tumor DNA (ctDNA) in the era of personalized cancer therapy. J Diabetes Metab Disord 2018; 17:19-30. [PMID: 30288382 PMCID: PMC6154523 DOI: 10.1007/s40200-018-0334-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
The heterogeneity of tumor is considered as a major difficulty to victorious personalized cancer medicine. There is an extremeneed of consistent response evaluation for in vivo tumor heterogeneity anditscoupledconflict mechanisms. In this occasion researchers will be able to keep pace withpredictive, preventive, personalized, and Participatory (P4) medicine for cancer managements. In fact tumor heterogeneity is a central part of cancer evolution,soin order to progress in understanding of the dynamics within a tumor some diagnostic apparatus should be improved. Latest molecular techniques like Next generation Sequencing (NGS) and ultra-deep sequencing could disclose some clones within a liquid tumor biopsy which mainly responsible of treatment resistance. Circulating tumor DNA (ctDNA) as a main component of liquid biopsy is agifted biomarker for cancer mutation tracking as well as profiling. Personalized medicine facilitate learning regarding to genetic pools of tumor and their possible respond to treatment which could be much easier by using of ctDNA.With this information, cliniciansarelooking forward to find the best strategies for prevention, screening, and treatment in the way of precision medicine. Currently, numerous clinical efficacy of such informative improved treatment are in hand. Here we represent the review of plasma-derived ctDNA studies use in personalized cancer managements.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Departments of Pathology, Doctor Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Circulating-free tumour DNA and the promise of disease phenotyping in hepatocellular carcinoma. Oncogene 2018; 37:4635-4638. [DOI: 10.1038/s41388-018-0262-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 03/23/2018] [Indexed: 02/08/2023]
|
10
|
Gorgannezhad L, Umer M, Islam MN, Nguyen NT, Shiddiky MJA. Circulating tumor DNA and liquid biopsy: opportunities, challenges, and recent advances in detection technologies. LAB ON A CHIP 2018; 18:1174-1196. [PMID: 29569666 DOI: 10.1039/c8lc00100f] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cell-free DNA (cfDNA) refers to short fragments of acellular nucleic acids detectable in almost all body fluids, including blood, and is involved in various physiological and pathological phenomena such as immunity, coagulation, aging, and cancer. In cancer patients, a fraction of hematogenous cfDNA originates from tumors, termed circulating tumor DNA (ctDNA), and may carry the same mutations and genetic alterations as those of a primary tumor. Thus, ctDNA potentially provides an opportunity for noninvasive assessment of cancer. Recent advances in ctDNA analysis methods will potentially lead to the development of a liquid biopsy tool for the diagnosis, prognosis, therapy response monitoring, and tracking the rise of new mutant sub-clones in cancer patients. Over the past few decades, cancer-specific mutations in ctDNA have been detected using a variety of untargeted methods such as digital karyotyping, personalized analysis of rearranged ends (PARE), whole-genome sequencing of ctDNA, and targeted approaches such as conventional and digital PCR-based methods and deep sequencing-based technologies. More recently, several chip-based electrochemical sensors have been developed for the analysis of ctDNA in patient samples. This paper aims to comprehensively review the diagnostic, prognostic, and predictive potential of ctDNA as a minimally invasive liquid biopsy for cancer patients. We also present an overview of current advances in the analytical sensitivity and accuracy of ctDNA analysis methods as well as biological and technical challenges, which need to be resolved for the integration of ctDNA analysis into routine clinical practice.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad Umer
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Md Nazmul Islam
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
11
|
Worm Ørntoft MB. Review of Blood-Based Colorectal Cancer Screening: How Far Are Circulating Cell-Free DNA Methylation Markers From Clinical Implementation? Clin Colorectal Cancer 2018; 17:e415-e433. [PMID: 29678513 DOI: 10.1016/j.clcc.2018.02.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer related deaths worldwide, and late stages (III-IV) in particular have low 5-year survival rates. Stage shifting by CRC screening programs has proven effective by decreasing morbidity and mortality and in many countries national CRC screening programs have been implemented. Currently, European, Asian, and American authorities recommend screening for CRC using fecal occult blood testing, sigmoidoscopy, or colonoscopy. Because these approaches all have weaknesses (eg, poor compliance, high costs, test invasiveness), much effort has been put into the development of alternative screening approaches, many of which are blood-based. Blood-based strategies especially present the advantages of minimally invasiveness compared to endoscopies and an expectantly higher compliance rate compared to stool-based tests. The last decades have seen many discovery studies identifying promising blood-based biomarkers of CRC; however, common to all of these markers is that their clinical usefulness remains evasive. At present only one blood-based CRC screening marker has been approved in the United States. The aim of this review is to discuss the development of blood-based cell-free DNA methylation marker candidates for CRC screening. On the basis of a methodical literature search, the past, present, and future of cell-free DNA screening markers for CRC are revised and discussed. Resource limitations and technical challenges related to sensitivity and specificity measurements keep many markers at bay. Possible solutions to these problems are offered to enable markers to benefit future screening participants.
Collapse
|
12
|
Lopez A, Harada K, Mizrak Kaya D, Dong X, Song S, Ajani JA. Liquid biopsies in gastrointestinal malignancies: when is the big day? Expert Rev Anticancer Ther 2017; 18:19-38. [PMID: 29202614 DOI: 10.1080/14737140.2018.1403320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anthony Lopez
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gastroenterology and Hepatology and Inserm U954, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Kazuto Harada
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dilsa Mizrak Kaya
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaochuan Dong
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|