1
|
Murugan AK, Kannan S, Alzahrani AS. TERT promoter mutations in gliomas: Molecular roles in tumorigenesis, metastasis, diagnosis, prognosis, therapeutic targeting, and drug resistance. Biochim Biophys Acta Rev Cancer 2025; 1880:189243. [PMID: 39674418 DOI: 10.1016/j.bbcan.2024.189243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Telomerase reverse transcriptase (TERT), a critical player in cellular immortalization, has emerged as a focal point of investigation due to its frequent promoter mutations in various human malignancies. TERT promoter mutations exhibit a significant role in tumorigenesis, fostering unbridled cellular proliferation and survival. This comprehensive review delves into the landscape of TERT promoter mutations and their profound implications in cancer, particularly within the context of gliomas. This article meticulously examines the intricate interplay between TERT promoter mutations and the metastatic cascade, shedding light on their capacity to orchestrate invasive behavior in gliomas. Moreover, this review describes the recent trends in therapeutic targeting of the TERT and dissects the evolving landscape of drug resistance associated with TERT mutations, providing insights into potential therapeutic challenges. In addition, the diagnostic and prognostic implications of TERT promoter mutations in gliomas are scrutinized, unraveling their potential as robust biomarkers. It also discusses the recent advancements in molecular diagnostics, illustrating the promise of TERT mutations as diagnostic tools and prognostic indicators. This review collectively aims to contribute to a deeper understanding of TERT promoter mutations in gliomas, offering a foundation for future research endeavors and paving the way for innovative strategies in glioma management.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.
| | - Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston PR1 2HE, UK
| | - Ali S Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
2
|
Uribe-Cardenas R, Greenfield JP. Reimagining the N-Of-1 Trial Within Pediatric Neuro-Oncology: A Shifting Paradigm. World Neurosurg 2024; 190:582-585. [PMID: 39425300 DOI: 10.1016/j.wneu.2024.06.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 10/21/2024]
Abstract
The field of neuro-oncology has seen significant advances that have allowed the expansion of the therapeutic armamentarium. Nevertheless, overall outcomes have not improved significantly particularly for high-grade tumors. The relative rarity of these pathologies in the pediatric population limits the capacity to design large-scale, multicenter, randomized clinical trials. The emergence of precision medicine as a direct result of better, more widespread genetic and molecular testing affords clinicians the possibility of envisioning new clinical trial paradigms. Each patient becomes their own singular trial receiving the most tailored treatment at every stage of their disease while serving as their own controls. Although limitations still exist for the widespread adoption of these technologies and incorporation into standard clinical care, the prospect of being able to offer directed therapies and monitor disease progression based on single-patient testing represents a much-needed paradigm shift in neuro-oncology.
Collapse
Affiliation(s)
- Rafael Uribe-Cardenas
- Department of Neurological Surgery, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
3
|
Das A, Ding S, Liu R, Huang C. Quantifying the Growth of Glioblastoma Tumors Using Multimodal MRI Brain Images. Cancers (Basel) 2023; 15:3614. [PMID: 37509277 PMCID: PMC10377296 DOI: 10.3390/cancers15143614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Predicting the eventual volume of tumor cells, that might proliferate from a given tumor, can help in cancer early detection and medical procedure planning to prevent their migration to other organs. In this work, a new statistical framework is proposed using Bayesian techniques for detecting the eventual volume of cells expected to proliferate from a glioblastoma (GBM) tumor. Specifically, the tumor region was first extracted using a parallel image segmentation algorithm. Once the tumor region was determined, we were interested in the number of cells that could proliferate from this tumor until its survival time. For this, we constructed the posterior distribution of the tumor cell numbers based on the proposed likelihood function and a certain prior volume. Furthermore, we extended the detection model and conducted a Bayesian regression analysis by incorporating radiomic features to discover those non-tumor cells that remained undetected. The main focus of the study was to develop a time-independent prediction model that could reliably predict the ultimate volume a malignant tumor of the fourth-grade severity could attain and which could also determine if the incorporation of the radiomic properties of the tumor enhanced the chances of no malignant cells remaining undetected.
Collapse
Affiliation(s)
- Anisha Das
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Shengxian Ding
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Rongjie Liu
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Chao Huang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
4
|
Childhood Brain Tumors: A Review of Strategies to Translate CNS Drug Delivery to Clinical Trials. Cancers (Basel) 2023; 15:cancers15030857. [PMID: 36765816 PMCID: PMC9913389 DOI: 10.3390/cancers15030857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Brain and spinal tumors affect 1 in 1000 people by 25 years of age, and have diverse histological, biological, anatomical and dissemination characteristics. A mortality of 30-40% means the majority are cured, although two-thirds have life-long disability, linked to accumulated brain injury that is acquired prior to diagnosis, and after surgery or chemo-radiotherapy. Only four drugs have been licensed globally for brain tumors in 40 years and only one for children. Most new cancer drugs in clinical trials do not cross the blood-brain barrier (BBB). Techniques to enhance brain tumor drug delivery are explored in this review, and cover those that augment penetration of the BBB, and those that bypass the BBB. Developing appropriate delivery techniques could improve patient outcomes by ensuring efficacious drug exposure to tumors (including those that are drug-resistant), reducing systemic toxicities and targeting leptomeningeal metastases. Together, this drug delivery strategy seeks to enhance the efficacy of new drugs and enable re-evaluation of existing drugs that might have previously failed because of inadequate delivery. A literature review of repurposed drugs is reported, and a range of preclinical brain tumor models available for translational development are explored.
Collapse
|
5
|
Schwark K, Messinger D, Cummings JR, Bradin J, Kawakibi A, Babila CM, Lyons S, Ji S, Cartaxo RT, Kong S, Cantor E, Koschmann C, Yadav VN. Receptor tyrosine kinase (RTK) targeting in pediatric high-grade glioma and diffuse midline glioma: Pre-clinical models and precision medicine. Front Oncol 2022; 12:922928. [PMID: 35978801 PMCID: PMC9376238 DOI: 10.3389/fonc.2022.922928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Pediatric high-grade glioma (pHGG), including both diffuse midline glioma (DMG) and non-midline tumors, continues to be one of the deadliest oncologic diagnoses (both henceforth referred to as “pHGG”). Targeted therapy options aimed at key oncogenic receptor tyrosine kinase (RTK) drivers using small-molecule RTK inhibitors has been extensively studied, but the absence of proper in vivo modeling that recapitulate pHGG biology has historically been a research challenge. Thankfully, there have been many recent advances in animal modeling, including Cre-inducible transgenic models, as well as intra-uterine electroporation (IUE) models, which closely recapitulate the salient features of human pHGG tumors. Over 20% of pHGG have been found in sequencing studies to have alterations in platelet derived growth factor-alpha (PDGFRA), making growth factor modeling and inhibition via targeted tyrosine kinases a rich vein of interest. With commonly found alterations in other growth factors, including FGFR, EGFR, VEGFR as well as RET, MET, and ALK, it is necessary to model those receptors, as well. Here we review the recent advances in murine modeling and precision targeting of the most important RTKs in their clinical context. We additionally provide a review of current work in the field with several small molecule RTK inhibitors used in pre-clinical or clinical settings for treatment of pHGG.
Collapse
Affiliation(s)
- Kallen Schwark
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Dana Messinger
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Jessica R. Cummings
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Joshua Bradin
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Abed Kawakibi
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Clarissa M. Babila
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Samantha Lyons
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Sunjong Ji
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Rodrigo T. Cartaxo
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Seongbae Kong
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Evan Cantor
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Carl Koschmann
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Viveka Nand Yadav
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Michigan School of Medicine, Ann Arbor, MI, United States
- Department of Pediatrics, Children's Mercy Research Institute (CMRI), Kansas, MO, United States
- Department of Pediatrics, University of Missouri Kansas City School of Medicine, Kansas, MO, United States
- *Correspondence: Viveka Nand Yadav,
| |
Collapse
|
6
|
Panobinostat penetrates the blood-brain barrier and achieves effective brain concentrations in a murine model. Cancer Chemother Pharmacol 2021; 88:555-562. [PMID: 34115161 DOI: 10.1007/s00280-021-04313-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Panobinostat, an orally bioavailable pan-HDAC inhibitor, has demonstrated potent activity in multiple malignancies, including pediatric brain tumors such as DIPG, with increased activity against H3K27M mutant cell lines. Given limited evidence regarding the CNS penetration of panobinostat, we sought to characterize its BBB penetration in a murine model. METHODS Panobinostat 15 mg/kg was administered IV to 12 CD-1 female mice. At specified time points, mice were euthanized, blood samples were collected, and brains were removed. LC-MS was performed to quantify panobinostat concentrations. Cmax and AUC were estimated and correlated with previously published pharmacokinetic analyses and reports of IC-50 values in DIPG cell lines. RESULTS Mean panobinostat plasma concentrations (ng/mL) were 27.3 ± 2.5 at 1 h, 7.56 ± 1.8 at 2 h, 1.48 ± 0.56 at 4 h, and 2.33 ± 1.18 at 7 h. Mean panobinostat brain concentrations (ng/g) were 60.5 ± 6.1 at 1 h, 42.9 ± 5.4 at 2 h, 33.2 ± 6.1 at 4 h, and 28.1 ± 4.3 at 7 h. Brain-to-plasma ratio at 1 h was 2.22 and the brain to plasma AUC ratio was 2.63. Based on the published human pharmacokinetic data, the anticipated Cmax in humans is expected to be significantly higher than the IC-50 identified in DIPG models. CONCLUSION It is expected that panobinostat would be effective in CNS tumors where the IC-50 is in the low nanomolar range. Thus, our data demonstrate panobinostat crosses the BBB and achieves concentrations above the IC-50 for DIPG and other brain tumors and should be explored further for clinical efficacy.
Collapse
|
7
|
Patel JP, Spiller SE, Barker ED. Drug penetration in pediatric brain tumors: Challenges and opportunities. Pediatr Blood Cancer 2021; 68:e28983. [PMID: 33719183 DOI: 10.1002/pbc.28983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/23/2022]
Abstract
Larger clinical trial enrollments and a greater understanding of biological heterogeneity have led to improved survival rates for children diagnosed with brain tumors in the last 50 years. However, reducing long-term morbidities and improving survival rates of high-risk tumors remain major challenges. Chemotherapy can reduce tumor burden, but effective drug penetration at the tumor site is limited by barriers in the route of drug administration and within the tumor microenvironment. Bioavailability of drugs is impeded by the blood-brain barrier, plasma protein binding, and structural components by the tumor including the matrix and vasculature contributing to increased interstitial fluid pressure, hypoxia, and acidity. Designing drug delivery systems to circumvent these barriers could lead to improved drug penetration at the tumor site and reduce adverse systemic side effects. In this review, we expand on how systemic and local barriers limit drug penetration and present potential methods to enhance drug penetration in pediatric brain tumors.
Collapse
Affiliation(s)
- Jenny P Patel
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee at Knoxville, Knoxville, Tennessee
| | - Susan E Spiller
- Pediatric Hematology/Oncology, East Tennessee Children's Hospital, Knoxville, Tennessee
| | - Elizabeth D Barker
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee at Knoxville, Knoxville, Tennessee
| |
Collapse
|
8
|
Ouyang Q, Meng Y, Zhou W, Tong J, Cheng Z, Zhu Q. New advances in brain-targeting nano-drug delivery systems for Alzheimer's disease. J Drug Target 2021; 30:61-81. [PMID: 33983096 DOI: 10.1080/1061186x.2021.1927055] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and its incidence is increasing due to the ageing population. Currently, the main limitations of AD treatment are low blood-brain barrier permeability, severe off-target of drugs, and immune abnormality. In this review, four hypotheses for Alzheimer's pathogenesis and three challenges for Alzheimer's drug delivery are discussed. In addition, this article summarises the different strategies of brain targeting nano-drug delivery systems (NDDSs) developed in the last 10 years. These strategies include receptor-mediated (transferrin receptor, low-density lipoprotein receptor-related protein, lactoferrin receptor, etc.), adsorption-mediated (cationic, alkaline polypeptide, cell-penetrating peptides, etc.), and transporter-mediated (P-gp, GLUT1, etc.). Moreover, it provides insights into novel strategies used in AD, such as exosomes, virus-like particles, and cell membrane coating particles. Hence, this review will help researchers to understand the current progress in the field of NDDSs for the central nervous system and find new directions for AD therapy.HighlightsCharacteristics and challenges based on the pathogenesis of AD were discussed.Recent advances in novel brain-targeting NDDSs for AD over the past 10 years were summarised.
Collapse
Affiliation(s)
- Qin Ouyang
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Yingcai Meng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Jianbin Tong
- Department of Anaesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Abstract
MEK inhibitors are an emerging therapy with increasing use in mitogen-activated protein kinase-driven central nervous system (CNS) tumors. There is limited data regarding efficacy and toxicity in pediatric patients. We report our clinical experience with trametinib-based therapy for the treatment of 14 consecutive pediatric patients with recurrent low-grade glioma (N=11) or high-grade CNS tumors (N=3) with MAP kinase pathway mutations. Patients received trametinib as monotherapy (N=9) or in combination (N=5) with another antineoplastic agent. Nine patients (64%) were progression free during treatment. Five patients showed a partial response, while 4 had stable disease. Two patients (14%) progressed on therapy. All partial responses were in patients with low-grade tumors. The remaining 3 patients were not evaluable due to toxicity limiting duration of therapy. Two of 3 patients with low-grade glioma with leptomeningeal dissemination showed radiographic treatment response. Five patients reported improved clinical symptoms while on trametinib. Adverse events on trametinib-based therapy included dermatologic, mouth sores, fever, gastrointestinal, infection, neutropenia, headache, and fatigue, and were more common in patients using combination therapy. Trametinib-based therapy demonstrated signals of efficacy in our single institutional cohort of pediatric patients with mitogen-activated protein kinase-driven CNS tumors. Our observations need to be confirmed in a clinical trial setting.
Collapse
|
10
|
Miklja Z, Pasternak A, Stallard S, Nicolaides T, Kline-Nunnally C, Cole B, Beroukhim R, Bandopadhayay P, Chi S, Ramkissoon SH, Mullan B, Bruzek AK, Gauthier A, Garcia T, Atchison C, Marini B, Fouladi M, Parsons DW, Leary S, Mueller S, Ligon KL, Koschmann C. Molecular profiling and targeted therapy in pediatric gliomas: review and consensus recommendations. Neuro Oncol 2019; 21:968-980. [PMID: 30805642 PMCID: PMC6682212 DOI: 10.1093/neuonc/noz022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As the field of neuro-oncology makes headway in uncovering the key oncogenic drivers in pediatric glioma, the role of precision diagnostics and therapies continues to rapidly evolve with important implications for the standard of care for clinical management of these patients. Four studies at major academic centers were published in the last year outlining the clinically integrated molecular profiling and targeting of pediatric brain tumors; all 4 demonstrated the feasibility and utility of incorporating sequencing into the care of children with brain tumors, in particular for children and young adults with glioma. Based on synthesis of the data from these studies and others, we provide consensus recommendations for the integration of precision diagnostics and therapeutics into the practice of pediatric neuro-oncology. Our primary consensus recommendation is that next-generation sequencing should be routinely included in the workup of most pediatric gliomas.
Collapse
Affiliation(s)
- Zachary Miklja
- University of Michigan Medical School, Ann Arbor, Michigan
| | - Amy Pasternak
- University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | | | | | - Cassie Kline-Nunnally
- University of California San Francisco (UCSF) Benioff Children’s Hospital, San Francisco, California
| | - Bonnie Cole
- Seattle Children’s Hospital/University of Washington (UW), Seattle, Washington
| | | | | | - Susan Chi
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shakti H Ramkissoon
- Foundation Medicine, Morrisville, North Carolina
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Brendan Mullan
- University of Michigan Medical School, Ann Arbor, Michigan
| | - Amy K Bruzek
- University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Taylor Garcia
- University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Bernard Marini
- University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | | | | | - Sarah Leary
- Seattle Children’s Hospital/University of Washington (UW), Seattle, Washington
| | - Sabine Mueller
- University of California San Francisco (UCSF) Benioff Children’s Hospital, San Francisco, California
| | - Keith L Ligon
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
| | - Carl Koschmann
- University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
11
|
Kallay L, Keskin H, Ross A, Rupji M, Moody OA, Wang X, Li G, Ahmed T, Rashid F, Stephen MR, Cottrill KA, Nuckols TA, Xu M, Martinson DE, Tranghese F, Pei Y, Cook JM, Kowalski J, Taylor MD, Jenkins A, Pomeranz Krummel DA, Sengupta S. Modulating native GABA A receptors in medulloblastoma with positive allosteric benzodiazepine-derivatives induces cell death. J Neurooncol 2019; 142:411-422. [PMID: 30725256 PMCID: PMC6478651 DOI: 10.1007/s11060-019-03115-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Pediatric brain cancer medulloblastoma (MB) standard-of-care results in numerous comorbidities. MB is comprised of distinct molecular subgroups. Group 3 molecular subgroup patients have the highest relapse rates and after standard-of-care have a 20% survival. Group 3 tumors have high expression of GABRA5, which codes for the α5 subunit of the γ-aminobutyric acid type A receptor (GABAAR). We are advancing a therapeutic approach for group 3 based on GABAAR modulation using benzodiazepine-derivatives. METHODS We performed analysis of GABR and MYC expression in MB tumors and used molecular, cell biological, and whole-cell electrophysiology approaches to establish presence of a functional 'druggable' GABAAR in group 3 cells. RESULTS Analysis of expression of 763 MB tumors reveals that group 3 tumors share high subgroup-specific and correlative expression of GABR genes, which code for GABAAR subunits α5, β3 and γ2 and 3. There are ~ 1000 functional α5-GABAARs per group 3 patient-derived cell that mediate a basal chloride-anion efflux of 2 × 109 ions/s. Benzodiazepines, designed to prefer α5-GABAAR, impair group 3 cell viability by enhancing chloride-anion efflux with subtle changes in their structure having significant impact on potency. A potent, non-toxic benzodiazepine ('KRM-II-08') binds to the α5-GABAAR (0.8 µM EC50) enhancing a chloride-anion efflux that induces mitochondrial membrane depolarization and in response, TP53 upregulation and p53, constitutively phosphorylated at S392, cytoplasmic localization. This correlates with pro-apoptotic Bcl-2-associated death promoter protein localization. CONCLUSION GABRA5 expression can serve as a diagnostic biomarker for group 3 tumors, while α5-GABAAR is a therapeutic target for benzodiazepine binding, enhancing an ion imbalance that induces apoptosis.
Collapse
Affiliation(s)
- Laura Kallay
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Havva Keskin
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra Ross
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Manali Rupji
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Olivia A Moody
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xin Wang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Guanguan Li
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Taukir Ahmed
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Farjana Rashid
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michael Rajesh Stephen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kirsten A Cottrill
- Molecular and Systems Pharmacology Graduate Training Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - T Austin Nuckols
- Molecular and Systems Pharmacology Graduate Training Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Maxwell Xu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deborah E Martinson
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Frank Tranghese
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - Yanxin Pei
- Center for Cancer and Immunology Research, Brain Tumor Institute, Children's National Medical Center, Washington, DC, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeanne Kowalski
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Canada
| | - Andrew Jenkins
- Departments of Anesthesiology & Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel A Pomeranz Krummel
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University Hospital, 1365C Clifton Road, Suite C5086, Atlanta, GA, USA.
| | - Soma Sengupta
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University Hospital, 1365C Clifton Road, Suite C5086, Atlanta, GA, USA.
| |
Collapse
|
12
|
Stallard S, Savelieff MG, Wierzbicki K, Mullan B, Miklja Z, Bruzek A, Garcia T, Siada R, Anderson B, Singer BH, Hashizume R, Carcaboso AM, McMurray KQ, Heth J, Muraszko K, Robertson PL, Mody R, Venneti S, Garton H, Koschmann C. CSF H3F3A K27M circulating tumor DNA copy number quantifies tumor growth and in vitro treatment response. Acta Neuropathol Commun 2018; 6:80. [PMID: 30111355 PMCID: PMC6094898 DOI: 10.1186/s40478-018-0580-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 01/06/2023] Open
|
13
|
Development of the CNS TAP tool for the selection of precision medicine therapies in neuro-oncology. J Neurooncol 2017; 137:155-169. [PMID: 29235051 DOI: 10.1007/s11060-017-2708-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023]
Abstract
The number of targeted therapies utilized in precision medicine are rapidly increasing. Neuro-oncology offers a unique challenge due to the varying blood brain barrier (BBB) penetration of each agent. Neuro-oncologists face a difficult task weighing the growing number of potential targeted therapies and their likelihood of BBB penetration. We developed the CNS TAP Working Group and performed an extensive literature review for the evidence-based creation of the CNS TAP tool, which was retrospectively validated by analyzing brain tumor patients who underwent therapy targeted based on genomic results from an academic sequencing study (MiOncoseq, n = 17) or private molecular profiling (Foundation One, n = 7). The CNS TAP tool scores relevant targeted agents by applying multiple variables (i.e., pre-clinical data, clinical data, BBB permeability) to patient specific genomic information and clinical trial availability. In the Michigan cohort, the CNS TAP tool predicted the selected agent 85.7% of the time. The CNS TAP tool predicted the agent independently selected by pediatric neuro-oncologists in the Colorado cohort 50% of the time. Patients with recurrent brain tumors treated with agents predicted by the CNS TAP tool demonstrated a median progression-free survival of 4 months and four patients with recurrent high-grade glioma maintained ongoing partial responses of at least 6 months. The CNS TAP tool is a formalized algorithm to assist clinicians select the optimal targeted therapy for neuro-oncology patients. The CNS TAP tool has relatively high concordance with selected therapies and clinical outcomes in patients receiving targeted therapy in this heterogeneous retrospective cohort were promising.
Collapse
|