1
|
Vikentjeva M, Geller J, Bragina O. Ticks and Tick-Borne Pathogens in Popular Recreational Areas in Tallinn, Estonia: The Underestimated Risk of Tick-Borne Diseases. Microorganisms 2024; 12:1918. [PMID: 39338592 PMCID: PMC11434170 DOI: 10.3390/microorganisms12091918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
This study reveals a significant presence of ticks and tick-borne pathogens in urban recreational areas of Tallinn, Estonia. During the period of May-June 2018, 815 Ixodes ticks were collected from an area of 11,200 m2 using the flagging method. Tick density reached up to 18.8 ticks per 100 m2, indicating a high concentration of ticks in these urban green spaces. Pathogen analysis demonstrated that 34% of the collected ticks were infected with at least one pathogen. Specifically, Borrelia burgdorferi s.l., the causative agent of Lyme borreliosis, was detected in 17.4% of the ticks; Rickettsia spp. was detected in 13.5%; Neoehrlichia mikurensis was detected in 5.5%; Borrelia miyamotoi was detected in 2.6%; and Anaplasma phagocytophilum and tick-borne encephalitis virus were detected in 0.5% each. These findings indicate that the prevalence and abundance of ticks and tick-borne pathogens in these urban environments are comparable to or even exceed those observed in natural endemic areas. Given the increasing incidence of Lyme borreliosis in Central and Northern Europe, the risk of tick bites and subsequent infection in urban recreational sites should not be underestimated. Public health measures, including enhanced awareness and precautionary information, are essential to mitigate the risk of tick-borne diseases in these urban settings.
Collapse
Affiliation(s)
- Maria Vikentjeva
- Department of Communicable Diseases, Health Board, Paldiski mnt 81, 10614 Tallinn, Estonia
| | - Julia Geller
- Influenza Centre, Health Board, Paldiski mnt 81, 10614 Tallinn, Estonia
| | - Olga Bragina
- Division of Chemistry, Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
2
|
Hills SL, Poehling KA, Chen WH, Staples JE. Tick-Borne Encephalitis Vaccine: Recommendations of the Advisory Committee on Immunization Practices, United States, 2023. MMWR Recomm Rep 2023; 72:1-29. [PMID: 37943707 PMCID: PMC10651317 DOI: 10.15585/mmwr.rr7205a1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Tick-borne encephalitis (TBE) virus is focally endemic in parts of Europe and Asia. The virus is primarily transmitted to humans by the bites of infected Ixodes species ticks but can also be acquired less frequently by alimentary transmission. Other rare modes of transmission include through breastfeeding, blood transfusion, solid organ transplantation, and slaughtering of viremic animals. TBE virus can cause acute neurologic disease, which usually results in hospitalization, often permanent neurologic or cognitive sequelae, and sometimes death. TBE virus infection is a risk for certain travelers and for laboratory workers who work with the virus. In August 2021, the Food and Drug Administration approved Ticovac TBE vaccine for use among persons aged ≥1 year. This report summarizes the epidemiology of and risks for infection with TBE virus, provides information on the immunogenicity and safety of TBE vaccine, and summarizes the recommendations of the Advisory Committee on Immunization Practices (ACIP) for use of TBE vaccine among U.S. travelers and laboratory workers. The risk for TBE for most U.S. travelers to areas where the disease is endemic is very low. The risk for exposure to infected ticks is highest for persons who are in areas where TBE is endemic during the main TBE virus transmission season of April–November and who are planning to engage in recreational activities in woodland habitats or who might be occupationally exposed. All persons who travel to areas where TBE is endemic should be advised to take precautions to avoid tick bites and to avoid the consumption of unpasteurized dairy products because alimentary transmission of TBE virus can occur. TBE vaccine can further reduce infection risk and might be indicated for certain persons who are at higher risk for TBE. The key factors in the risk-benefit assessment for vaccination are likelihood of exposure to ticks based on activities and itinerary (e.g., location, rurality, season, and duration of travel or residence). Other risk-benefit considerations should include 1) the rare occurrence of TBE but its potentially high morbidity and mortality, 2) the higher risk for severe disease among certain persons (e.g., older persons aged ≥60 years), 3) the availability of an effective vaccine, 4) the possibility but low probability of serious adverse events after vaccination, 5) the likelihood of future travel to areas where TBE is endemic, and 6) personal perception and tolerance of risk ACIP recommends TBE vaccine for U.S. persons who are moving or traveling to an area where the disease is endemic and will have extensive exposure to ticks based on their planned outdoor activities and itinerary. Extensive exposure can be considered based on the duration of travel and frequency of exposure and might include shorter-term (e.g., <1 month) travelers with daily or frequent exposure or longer-term travelers with regular (e.g., a few times a month) exposure to environments that might harbor infected ticks. In addition, TBE vaccine may be considered for persons who might engage in outdoor activities in areas where ticks are likely to be found, with a decision to vaccinate made on the basis of an assessment of their planned activities and itinerary, risk factors for a poor medical outcome, and personal perception and tolerance of risk. In the laboratory setting, ACIP recommends TBE vaccine for laboratory workers with a potential for exposure to TBE virus
Collapse
|
3
|
Egyed L, Nagy D, Lang Z. Features of Engorgement of Ixodes ricinus Ticks Infesting the Northern White-Breasted Hedgehog in an Urban Park. Microorganisms 2023; 11:microorganisms11040881. [PMID: 37110304 PMCID: PMC10145640 DOI: 10.3390/microorganisms11040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
In this work we exploited the parallel dense tick and hedgehog populations of an urban park in Budapest, Hungary as a good host–parasite model to obtain detailed data about this physiological relationship. Over a 27-week period from April to October, 57 hedgehogs were captured in an urban park and kept for 10–14 days in animal house. All dropped off ticks were sampled, which allowed us to draw more a detailed picture of Ixodes ricinus–hedgehog relationships. The results indicated that the hedgehog is an effective host for ticks (prevalence: 100%) and the mean intensity of infestation was 83.25. Of the male ticks, 68.42% dropped off dead; 1.56% of the dropped off nymphs and 11.4% of the larvae finished their bloodmeal with red cuticles, while 5.79% of the females could not finish their blood meal, and dropped off dried, dead, or shrunken. We applied novel statistical methods of survival analysis of prevalent cohorts to estimate the whole attachment times of ticks from the observed attachment times, having no information about when the ticks attached to their hosts. Mean attachment times were 4 days for larvae, 5 days for nymphs, 10 days for females, and 8 days for males. On the first day after capture of the hosts, fewer females, nymphs, and larvae detached engorged than had been predicted, but this was not true for males. Mean intensity of infestation per host was 1.4 for males, 6.7 for females, 45.0 for nymphs, and 29.3 for larvae. As regards seasonality, the activity of all stages of ticks consisted of several smaller peaks and considerably differed by season. Studies of the dense tick–host populations of this natural habitat could provide further valuable data about tick–host relations, the data of which cannot be drawn from most other hedgehog habitats.
Collapse
|
4
|
Kholodilov IS, Belova OA, Ivannikova AY, Gadzhikurbanov MN, Makenov MT, Yakovlev AS, Polienko AE, Dereventsova AV, Litov AG, Gmyl LV, Okhezin EV, Luchinina SV, Klimentov AS, Karganova GG. Distribution and Characterisation of Tick-Borne Flavi-, Flavi-like, and Phenuiviruses in the Chelyabinsk Region of Russia. Viruses 2022; 14:v14122699. [PMID: 36560703 PMCID: PMC9780909 DOI: 10.3390/v14122699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, we presented data from a two-year study of flavi-, flavi-like, and phenuiviruses circulation in the population of ixodid ticks in the Chelyabinsk region. We isolated three tick-borne encephalitis virus (TBEV) strains from I. persulcatus, which was not detected in the ticks of the genus Dermacentor. The virus prevalence ranged from 0.66% to 2.28%. The Yanggou tick virus (YGTV) is widespread in steppe and forest-steppe zones and is mainly associated with ticks of the genus Dermacentor. We isolated 26 strains from D. reticulatus, D. marginatus, and I. persulcatus ticks in the HAE/CTVM8 tick cell line. The virus prevalence ranged from 1.58% to 4.18% in D. reticulatus, ranged from 0.78% to 3.93% in D. marginatus, and was 0.66% in I. persulcatus. There was combined focus of TBEV and YGTV in the territory of the Chelyabinsk region. The Alongshan virus (ALSV) was found to be associated with I. persulcatus ticks and is spread in forest zone. We detected 12 amplicons and isolated 7 strains of ALSV in tick cells. The virus prevalence ranged from 1.13% to 6.00%. The phlebovirus Gomselga and unclassified phenuivirus Stavropol were associated with I. persulcatus and D. reticulatus ticks, respectively. Virus prevalence of the unclassified phenuivirus Stavropol in the Chelyabinsk region is lower than that in neighbouring regions.
Collapse
Affiliation(s)
- Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Anna Y. Ivannikova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Magomed N. Gadzhikurbanov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Marat T. Makenov
- Department of Molecular Diagnostics and Epidemiology, Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Alexander S. Yakovlev
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alexandra E. Polienko
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alena V. Dereventsova
- Laboratory of Biochemistry, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Alexander G. Litov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Larissa V. Gmyl
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Egor V. Okhezin
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Alexander S. Klimentov
- Laboratory of Biochemistry, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia
- Correspondence:
| |
Collapse
|
5
|
Integrated Jingmenvirus Polymerase Gene in Ixodes ricinus Genome. Viruses 2022; 14:v14091908. [PMID: 36146715 PMCID: PMC9501327 DOI: 10.3390/v14091908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Members of the jingmenviruses group have been found in arthropods and mammals on all continents except Australia and Antarctica. Two viruses of this group were isolated from patients with fever after a tick bite. Using a nested RT-PCR assay targeting a jingmenvirus polymerase gene fragment, we screened ticks collected in seven regions of Russia and found that the abundant jingmenvirus-positive were of Ixodes ricinus species, with the prevalence ranging from 19.8% to 34.3%. In all cases, DNase/RNase treatment suggested that the detected molecule was DNA and subsequent next generation sequencing (NGS) proved that the viral polymerase gene was integrated in the I. ricinus genome. The copy number of the integrated polymerase gene was quantified by qPCR relative to the ITS2 gene and estimated as 1.32 copies per cell. At least three different genetic variants of the integrated polymerase gene were found in the territory of Russia. Phylogenetic analysis of the integrated jingmenvirus polymerase gene showed the highest similarity with the sequence of the correspondent gene obtained in Serbia from I. ricinus.
Collapse
|
6
|
Wondim MA, Czupryna P, Pancewicz S, Kruszewska E, Groth M, Moniuszko-Malinowska A. Epidemiological Trends of Trans-Boundary Tick-Borne Encephalitis in Europe, 2000-2019. Pathogens 2022; 11:pathogens11060704. [PMID: 35745558 PMCID: PMC9228375 DOI: 10.3390/pathogens11060704] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Tick-borne encephalitis is a neuroinfection widely distributed in the Euro-Asia region. Primarily, the virus is transmitted by the bite of infected ticks. From 2000-2019, the total number of confirmed cases in Europe reported to the European Centre for Disease Prevention and Control was 51,519. The number of cases decreased in 2014 and 2015; however, since 2015, a growing number of cases have been observed, with the involvement of countries in which TBE has not been previously reported. The determinant factors for the spread of TBE are host population size, weather conditions, movement of hosts, and local regulations on the socioeconomic dynamics of the local and travelling people around the foci areas. The mean incidence rate of tick-borne encephalitis from 2000-2019 in Europe was 3.27, while the age-adjusted mean incidence rate was 2.19 per 100,000 population size. This review used several articles and data sources from the European Centre for Diseases Prevention and Control.
Collapse
|
7
|
Hansford KM, Wheeler BW, Tschirren B, Medlock JM. Questing Ixodes ricinus ticks and Borrelia spp. in urban green space across Europe: A review. Zoonoses Public Health 2022; 69:153-166. [PMID: 35122422 PMCID: PMC9487987 DOI: 10.1111/zph.12913] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022]
Abstract
For more than three decades, it has been recognized that Ixodes ricinus ticks occur in urban green space in Europe and that they harbour multiple pathogens linked to both human and animal diseases. Urban green space use for health and well‐being, climate mitigation or biodiversity goals is promoted, often without consideration for the potential impact on tick encounters or tick‐borne disease outcomes. This review synthesizes the results of over 100 publications on questing I. ricinus and Borrelia spp. infections in ticks in urban green space in 24 European countries. It presents data on several risk indicators for Lyme borreliosis and highlights key research gaps and recommendations for future studies. Across Europe, mean density of I. ricinus in urban green space was 6.9 (range; 0.1–28.8) per 100 m2 and mean Borrelia prevalence was 17.3% (range; 3.1%–38.1%). Similar density estimates were obtained for nymphs, which had a Borrelia prevalence of 14.2% (range; 0.5%–86.7%). Few studies provided data on both questing nymph density and Borrelia prevalence, but those that did found an average of 1.7 (range; 0–5.6) Borrelia‐infected nymphs per 100 m2 of urban green space. Although a wide range of genospecies were reported, Borrelia afzelii was the most common in most parts of Europe, except for England where B. garinii was more common. The emerging pathogen Borrelia miyamotoi was also found in several countries, but with a much lower prevalence (1.5%). Our review highlights that I. ricinus and tick‐borne Borrelia pathogens are found in a wide range of urban green space habitats and across several seasons. The impact of human exposure to I. ricinus and subsequent Lyme borreliosis incidence in urban green space has not been quantified. There is also a need to standardize sampling protocols to generate better baseline data for the density of ticks and Borrelia prevalence in urban areas.
Collapse
Affiliation(s)
- Kayleigh M Hansford
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK.,European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK
| | - Benedict W Wheeler
- European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK
| | | | - Jolyon M Medlock
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK.,Health Protection Research Unit in Environmental Change & Health, Public Health England, Porton Down, UK.,Health Protection Research Unit in Emerging & Zoonotic Infections, Public Health England, Porton Down, UK
| |
Collapse
|
8
|
Blahove MR, Carter JR. Flavivirus Persistence in Wildlife Populations. Viruses 2021; 13:v13102099. [PMID: 34696529 PMCID: PMC8541186 DOI: 10.3390/v13102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
A substantial number of humans are at risk for infection by vector-borne flaviviruses, resulting in considerable morbidity and mortality worldwide. These viruses also infect wildlife at a considerable rate, persistently cycling between ticks/mosquitoes and small mammals and reptiles and non-human primates and humans. Substantially increasing evidence of viral persistence in wildlife continues to be reported. In addition to in humans, viral persistence has been shown to establish in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines. Although a considerable amount of research has centered on the potential roles of defective virus particles, autophagy and/or apoptosis-induced evasion of the immune response, and the precise mechanism of these features in flavivirus persistence have yet to be elucidated. In this review, we present findings that aid in understanding how vector-borne flavivirus persistence is established in wildlife. Research studies to be discussed include determining the critical roles universal flavivirus non-structural proteins played in flaviviral persistence, the advancement of animal models of viral persistence, and studying host factors that allow vector-borne flavivirus replication without destructive effects on infected cells. These findings underscore the viral–host relationships in wildlife animals and could be used to elucidate the underlying mechanisms responsible for the establishment of viral persistence in these animals.
Collapse
|
9
|
Makenov MT, Toure AH, Korneev MG, Sacko N, Porshakov AM, Yakovlev SA, Radyuk EV, Zakharov KS, Shipovalov AV, Boumbaly S, Zhurenkova OB, Grigoreva YE, Morozkin ES, Fyodorova MV, Boiro MY, Karan LS. Rhipicephalus microplus and its vector-borne haemoparasites in Guinea: further species expansion in West Africa. Parasitol Res 2021; 120:1563-1570. [PMID: 33788020 DOI: 10.1007/s00436-021-07122-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/10/2021] [Indexed: 11/29/2022]
Abstract
Rhipicephalus microplus is an ixodid tick with a pantropical distribution that represents a serious threat to livestock. West Africa was free of this tick until 2007, when its introduction into Benin was reported. Shortly thereafter, further invasion of this tick species into other West African countries was identified. In this paper, we describe the first detection of R. microplus in Guinea and list the vector-borne haemoparasites that were detected in the invading and indigenous Boophilus species. In 2018, we conducted a small-scale survey of ticks infesting cattle in three administrative regions of Guinea: N`Zerekore, Faranah, and Kankan. The tick species were identified by examining their morphological characteristics and by sequencing their COI gene and ITS-2 gene fragments. R. microplus was found in each studied region. In the ticks, we found the DNA of Babesia bigemina, Anaplasma marginale, Anaplasma platys, and Ehrlichia sp. The results of this study indicate that R. microplus was introduced into Guinea in association with cows from Mali and/or the Ivory Coast.
Collapse
Affiliation(s)
| | | | | | - Noumany Sacko
- Research Institute of Applied Biology of Guinea, Kindia, Guinea.,International Center for Research of Tropical Infections in Guinea, N`Zerekore, Guinea
| | | | | | | | | | - Andrey V Shipovalov
- State Research Center of Virology and Biotechnology VECTOR, Kol'tsovo, Russia
| | - Sanaba Boumbaly
- Research Institute of Applied Biology of Guinea, Kindia, Guinea.,International Center for Research of Tropical Infections in Guinea, N`Zerekore, Guinea
| | | | | | | | | | - Mamadou Y Boiro
- Research Institute of Applied Biology of Guinea, Kindia, Guinea
| | | |
Collapse
|
10
|
Makenov MT, Toure AH, Bayandin RB, Gladysheva AV, Shipovalov AV, Boumbaly S, Sacko N, Korneev MG, Yakovlev SA, Zhurenkova OB, Grigoreva YE, Fyodorova MV, Radyuk EV, Morozkin ES, Boiro MY, Matsvay A, Khafizov K, Karan LS. Ngari virus (Orthobunyavirus, Peribunyaviridae) in ixodid ticks collected from cattle in Guinea. Acta Trop 2021; 214:105790. [PMID: 33309594 DOI: 10.1016/j.actatropica.2020.105790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/27/2022]
Abstract
Ngari virus is a mosquito-borne virus belonging to the genus Orthobunyavirus (Peribunyaviridae family). This virus is pathogenic to humans and causes severe illness. Ngari virus is present in several African countries, including Madagascar. Here, we report the detection of Ngari virus in ixodid ticks collected from cows in Guinea. A tick survey was conducted in March-November of 2018 in six regions of Guinea. The sample comprised 710 pools, with a total of 2067 ticks belonging to five species collected from 197 cows. At the initial stage, we screened a subsample of tick pools of vector-borne viruses with a multiplex genus-specific primer panel. In the second stage of the study, we narrowed the search and screened all the samples by qPCR for the detection of Ngari virus. All positive samples were sequenced with primers flanking Ngari virus-specific fragments on the S and M segments. We found Ngari virus in 12 pools that were formed from engorged ticks collected from livestock in three villages of the Kindia and Kankan regions. Sequencing of the S and M segments confirmed that the detected viruses belong to Ngari virus, and the viruses were most similar to the strain Adrar, which was isolated in Mauritania. We detected viral RNA in ticks of the following species: Amblyomma variegatum, Rhipicephalus geigyi, and Rh. (Boophilus) spp. There is no evidence that ixodid ticks are competent vectors of the Ngari virus. Most likely, the ticks obtained the virus through blood from an infected host. The study of engorged ticks can be recommended as a simpler approach for the wide screening of the Ngari virus and subsequent testing of cattle and mosquitos in those locations where the PCR-positive ticks were collected.
Collapse
|
11
|
Ivanov AS, Nikolaev KG, Stekolshchikova AA, Tesfatsion WT, Yurchenko SO, Novoselov KS, Andreeva DV, Rubtsova MY, Vorovitch MF, Ishmukhametov AA, Egorov AM, Skorb EV. Tick-Borne Encephalitis Electrochemical Detection by Multilayer Perceptron on Liquid–Metal Interface. ACS APPLIED BIO MATERIALS 2020; 3:7352-7356. [DOI: 10.1021/acsabm.0c00954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Artemii S. Ivanov
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| | - Konstantin G. Nikolaev
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| | - Anna A. Stekolshchikova
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| | - Weini T. Tesfatsion
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| | | | - Kostya S. Novoselov
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Daria V. Andreeva
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Maya Yu. Rubtsova
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Mikhail F. Vorovitch
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow 108819, Russian Federation
- Sechenov First Moscow State Medical University, 119991 Moscow, Russian Federation
| | - Aydar A. Ishmukhametov
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow 108819, Russian Federation
- Sechenov First Moscow State Medical University, 119991 Moscow, Russian Federation
| | - Alex M. Egorov
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow 108819, Russian Federation
| | - Ekaterina V. Skorb
- Infochemistry Scientific Center, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russian Federation
| |
Collapse
|
12
|
Deviatkin AA, Kholodilov IS, Belova OA, Bugmyrin SV, Bespyatova LA, Ivannikova AY, Vakulenko YA, Lukashev AN, Karganova GG. Baltic Group Tick-Borne Encephalitis Virus Phylogeography: Systemic Inconsistency Pattern between Genetic and Geographic Distances. Microorganisms 2020; 8:microorganisms8101589. [PMID: 33076346 PMCID: PMC7602664 DOI: 10.3390/microorganisms8101589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 10/26/2022] Open
Abstract
Tick-Borne Encephalitis Virus (TBEV) is a dangerous arbovirus widely distributed in Northern Eurasia. The area of this pathogen changes over time. At the beginning of the 2000s, the Ixodes tick populations in Karelia increased. At the same time, the area of I. persulcatus, the main vector of the Siberian TBEV subtype, also expanded. Herein, we sequenced 10 viruses isolated from ticks collected in three locations from the Karelia region in 2008-2018. PCR positive samples were passaged in suckling mice or pig embryo kidney cells (PEK). After the second passage in suckling, mice viral RNA was isolated and E-gene fragment was sequenced. Viral sequences were expected to be similar or nearly identical. Instead, there was up to a 4.8% difference in nucleotide sequence, comparable with the most diverse viruses belonging to the Baltic subgroup in Siberian TBEV subtype (Baltic TBEV-Sib). To reveal whether this was systemic or incidental, a comprehensive phylogeographical analysis was conducted. Interestingly, viruses within each geographic region demonstrated comparable diversity to the whole Baltic TBEV-Sib. Moreover, Baltic TBEV-Sib has a distribution area limited by three ecological regions. This means that active virus mixing occurs in the vast geographic area forming one common virus pool. The most plausible explanation is the involvement of flying animals in the TBEV spread.
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Correspondence: (A.A.D.); (G.G.K.)
| | - Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.Y.I.)
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.Y.I.)
| | - Sergey V. Bugmyrin
- Laboratory for Animal and Plant Parasitology, Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 185910 Petrozavodsk, Russia; (S.V.B.); (L.A.B.)
| | - Lubov A. Bespyatova
- Laboratory for Animal and Plant Parasitology, Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 185910 Petrozavodsk, Russia; (S.V.B.); (L.A.B.)
| | - Anna Y. Ivannikova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.Y.I.)
| | - Yulia A. Vakulenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Alexander N. Lukashev
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia; (I.S.K.); (O.A.B.); (A.Y.I.)
- Department of Organization and Technology of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Correspondence: (A.A.D.); (G.G.K.)
| |
Collapse
|
13
|
Deviatkin AA, Kholodilov IS, Vakulenko YA, Karganova GG, Lukashev AN. Tick-Borne Encephalitis Virus: An Emerging Ancient Zoonosis? Viruses 2020; 12:v12020247. [PMID: 32102228 PMCID: PMC7077300 DOI: 10.3390/v12020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
Tick-borne encephalitis (TBE) is one of the most important viral zoonosis transmitted by the bite of infected ticks. In this study, all tick-borne encephalitis virus (TBEV) E gene sequences available in GenBank as of June 2019 with known date of isolation (n = 551) were analyzed. Simulation studies showed that a sample bias could significantly affect earlier studies, because small TBEV datasets (n = 50) produced non-overlapping intervals for evolutionary rate estimates. An apparent lack of a temporal signal in TBEV, in general, was found, precluding molecular clock analysis of all TBEV subtypes in one dataset. Within all subtypes and most of the smaller groups in these subtypes, there was evidence of many medium- and long-distance virus transfers. These multiple random events may play a key role in the virus spreading. For some groups, virus diversity within one territory was similar to diversity over the whole geographic range. This is best exemplified by the virus diversity observed in Switzerland or Czech Republic. These two countries yielded most of the known European subtype Eu3 subgroup sequences, and the diversity of viruses found within each of these small countries is comparable to that of the whole Eu3 subgroup, which is prevalent all over Central and Eastern Europe. Most of the deep tree nodes within all three established TBEV subtypes dated less than 300 years back. This could be explained by the recent emergence of most of the known TBEV diversity. Results of bioinformatics analysis presented here, together with multiple field findings, suggest that TBEV may be regarded as an emerging disease.
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Laboratory of Postgenomic Technologies, Izmerov Research Institute of Occupational Health, 105275 Moscow, Russia
- Correspondence: ; Tel.: +7-906-739-0860
| | - Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia; (I.S.K.); (G.G.K.)
| | - Yulia A. Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia; (I.S.K.); (G.G.K.)
- Department of Organization and Technology of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alexander N. Lukashev
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| |
Collapse
|
14
|
Zubriková D, Wittmann M, Hönig V, Švec P, Víchová B, Essbauer S, Dobler G, Grubhoffer L, Pfister K. Prevalence of tick-borne encephalitis virus and Borrelia burgdorferi sensu lato in Ixodes ricinus ticks in Lower Bavaria and Upper Palatinate, Germany. Ticks Tick Borne Dis 2020; 11:101375. [PMID: 31983627 DOI: 10.1016/j.ttbdis.2020.101375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
Lyme borreliosis and tick-borne encephalitis (TBE) are the most common tick-borne diseases in Germany. We collected Ixodes ricinus ticks from 16 high-risk and four low-risk sites distributed in Lower Bavaria and Upper Palatinate based on the number of human TBE cases recorded at the Robert Koch Institute from 2001 to 2009. A total of 8805 questing ticks (8203 nymphs, 602 adults) were collected in 2010 and examined in pools for the presence of tick-borne encephalitis virus (TBEV) using real-time RT-PCR. Overall TBEV prevalence evaluated as the minimum infection rate (MIR) was 0.26 % (23 positive pools/8805 ticks in 1029 pools). TBEV was detected at seven of the 16 high-risk sites, where MIR ranged from 0.16 to 2.86 %. A total of 3969 ticks were examined by PCR for infection with Borrelia burgdorferi sensu lato (s.l.) targeting the 5 S-23 S rRNA intergenic spacer (IGS) region. IGS nucleotide sequences were used to determine genospecies. Selected positive Borrelia samples were subjected to PCR and sequencing targeting the OspA gene, providing 46 sequences for molecular phylogenetic analysis. Of the 3969 questing ticks, 506 (12.7 %) were positive for B. burgdorferi s.l. Seven B. burgdorferi s.l. genospecies were identified: B. afzelii (41.3 %), B. garinii (19 %), B. valaisiana (13.8 %), B. burgdorferi sensu stricto (11.1 %), B. spielmanii (0.4 %), B. lusitaniae (0.2 %), and Candidatus B. finlandensis (0.6 %). Mixed infections were identified in 13.6 % of the ticks. The rate of infection in questing ticks varied among sites from 5.6 % (72 examined, four positive) to 29.5 % (88 examined, 26 positive). B. burgdorferi s.l. occurred at all 20 sites, whereas TBEV was detected only at the high-risk sites where more human TBE cases were reported compared to low-risk sites.
Collapse
Affiliation(s)
- Dana Zubriková
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Maria Wittmann
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Václav Hönig
- Biology Centre AS CR, Institute of Parasitology & University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Veterinary Research Institute, Brno, Czech Republic
| | - Pavel Švec
- Department of Geoinformatics, VSB - Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Bronislava Víchová
- Institute of Parasitology of the Slovak Academy of Sciences, Košice, Slovak Republic
| | - Sandra Essbauer
- Bundeswehr Institute of Microbiology, German Center of Infection Research DZIF Partner, Munich, Bavaria, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, German Center of Infection Research DZIF Partner, Munich, Bavaria, Germany
| | - Libor Grubhoffer
- Biology Centre AS CR, Institute of Parasitology & University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Kurt Pfister
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|