1
|
Kim B, Lee YJ, Choi I, Kang YM, Kwak D, Seo MG. Prevalence and zoonotic potential of pathogens in micromammals (rodents and insectivores) in the Republic of Korea. Acta Trop 2025; 266:107649. [PMID: 40355036 DOI: 10.1016/j.actatropica.2025.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/20/2025] [Accepted: 05/10/2025] [Indexed: 05/14/2025]
Abstract
Micromammals (rodents and insectivores), are reservoirs of numerous zoonotic pathogens and play a critical role in infectious disease transmission. The rising prevalence of micromammals-associated pathogens in the Republic of Korea highlights the urgent need for targeted surveillance. Here, we analyzed micromammal blood samples collected from 16 nationwide sites during spring 2022, autumn 2022, and spring 2023 to investigate the following key zoonotic diseases: severe fever with thrombocytopenia syndrome, Lyme disease, Q fever, scrub typhus, anaplasmosis, ehrlichiosis, and rickettsioses. Our analysis revealed that of the 756 micromammal samples analyzed, 0.1 % had Borrelia afzelii, Borrelia valaisiana, and Orientia tsutsugamushi, 12.7 % contained Anaplasma phagocytophilum, and 82 % Neoehrlichia mikurensis. Importantly, we detected Borrelia valaisiana in micromammals in the Republic of Korea for the first time. Phylogenetic analysis identified close genetic links between local and global pathogen strains, highlighting potential cross-border transmission risks. The high prevalence of Neoehrlichia mikurensis emphasizes the zoonotic threat of micromammals. These findings provide crucial insights about enhancing micromammals-associate pathogen surveillance, inform public health strategies, and reinforce the importance of monitoring micromammal populations for zoonotic infection risk mitigation in Korea and beyond.
Collapse
Affiliation(s)
- Beoul Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - You-Jeong Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Insu Choi
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yong-Myung Kang
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dongmi Kwak
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min-Goo Seo
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Gong D, Wu B, Qin H, Fu D, Guo S, Wang B, Li B. Functional characterization of a farnesyl diphosphate synthase from Dendrobium nobile Lindl. AMB Express 2022; 12:129. [PMID: 36202944 PMCID: PMC9537409 DOI: 10.1186/s13568-022-01470-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
Abstract
Dendrobium nobile Lindl. has been used as a traditional Chinese medicine for a long time, in which the most important compound is dendrobine functioning in a variety of pharmacological activities. Farnesyl diphosphate synthase (FPPS) is one of the key enzymes in the biosynthetic pathway of dendrobine. In this work, we found the expression profiles of DnFPPS were correlated with the contents of dendrobine under the methyl jasmonate (MeJA) treatments at different time. Then, the cloning and functional identification of a novel FPPS from D. nobile. The full length of DnFPPS is 1231 bp with an open reading frame of 1047 bp encoding 348 amino acids. The sequence similarity analysis demonstrated that DnFPPS was in the high homology with Dendrobium huoshanense and Dendrobium catenatum and contained four conserved domains. Phylogenetic analysis showed that DnFPPS was the close to the DhFPPS. Then, DnFPPS was induced to express in Escherichia coli, purified, and identified by SDS-PAGE electrophoresis. Gas chromatography-mass spectrometry analysis indicated that DnFPPS could catalyze dimethylallyl pyrophosphate and isopentenyl pyrophosphate to produce farnesyl diphosphate. Taken together, a novel DnFPPS was cloned and functionally identified, which supplied a candidate gene for the biosynthetic pathway of dendrobine.
Collapse
Affiliation(s)
- Daoyong Gong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.,College of Bioengineering of Chongqing University, Chongqing, 400045, People's Republic of China
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hongting Qin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Dezhao Fu
- Beijing Asia-East Bio-pharmaceutical Co., Ltd, Beijing, 102200, People's Republic of China
| | - Shunxing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Bochu Wang
- College of Bioengineering of Chongqing University, Chongqing, 400045, People's Republic of China
| | - Biao Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
3
|
Carvajal-Agudelo JD, Ramírez-Chaves HE, Ossa-López PA, Rivera-Páez FA. Bacteria related to tick-borne pathogen assemblages in Ornithodoros cf. hasei (Acari: Argasidae) and blood of the wild mammal hosts in the Orinoquia region, Colombia. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 87:253-271. [PMID: 35829939 PMCID: PMC9424158 DOI: 10.1007/s10493-022-00724-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/16/2022] [Indexed: 05/19/2023]
Abstract
Interest in research on soft ticks has increased in recent decades, leading to valuable insight into their role as disease vectors. The use of metagenomics-based analyses have helped to elucidate ecological factors involved in pathogen, vector, and host dynamics. To understand the main bacterial assemblages present in Ornithodoros cf. hasei and its mammalian hosts, 84 ticks and 13 blood samples from bat hosts (Chiroptera) were selected, and the 16S rRNA gene V4 region was sequenced in five pools (each one related to each host-tick pairing). Bacterial taxonomic assignment analyses were performed by comparing operational taxonomic units (OTUs) shared between ticks and their host blood. This analysis showed the presence of Proteobacteria (38.8%), Enterobacteriaceae (25%), Firmicutes (12.3%), and Actinobacteria (10.9%) within blood samples, and Rickettsiaceae (39%), Firmicutes (25%), Actinobacteria (13.1%), and Proteobacteria (9%) within ticks. Species related to potentially pathogenic genera were detected in ticks, such as Borrelia sp., Bartonella tamiae, Ehrlichia sp. and Rickettsia-like endosymbiont, and the presence of these organisms was found in all analyzed bat species (Cynomops planirostris, Molossus pretiosus, Noctilio albiventris), and O. cf. hasei. About 41-48.6% of bacterial OTUs (genera and species) were shared between ticks and the blood of bat hosts. Targeted metagenomic screening techniques allowed the detection of tick-associated pathogens for O. cf. hasei and small mammals for the first time, enabling future research on many of these pathogens.
Collapse
Affiliation(s)
- Juan D Carvajal-Agudelo
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 N° 26-10, 170004, Manizales, Caldas, Colombia
| | - Héctor E Ramírez-Chaves
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 N° 26-10, 170004, Manizales, Caldas, Colombia
- Centro de Museos, Museo de Historia Natural, Universidad de Caldas, Calle 65 N° 26-10, 170004, Manizales, Caldas, Colombia
| | - Paula A Ossa-López
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 N° 26-10, 170004, Manizales, Caldas, Colombia
- Doctorado en Ciencias, Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Fredy A Rivera-Páez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 N° 26-10, 170004, Manizales, Caldas, Colombia.
| |
Collapse
|
4
|
Moustafa MAM, Mohamed WMA, Lau AC, Chatanga E, Qiu Y, Hayashi N, Naguib D, Sato K, Takano A, Mastuno K, Nonaka N, Taylor D, Kawabata H, Nakao R. Novel symbionts and potential human pathogens excavated from argasid tick microbiomes that are shaped by dual or single symbiosis. Comput Struct Biotechnol J 2022; 20:1979-1992. [PMID: 35521555 PMCID: PMC9062450 DOI: 10.1016/j.csbj.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022] Open
Abstract
Research on vector-associated microbiomes has been expanding due to increasing emergence of vector-borne pathogens and awareness of the importance of symbionts in the vector physiology. However, little is known about microbiomes of argasid (or soft-bodied) ticks due to limited access to specimens. We collected four argasid species (Argas japonicus, Carios vespertilionis, Ornithodoros capensis, and Ornithodoros sawaii) from the nests or burrows of their vertebrate hosts. One laboratory-reared argasid species (Ornithodoros moubata) was also included. Attempts were then made to isolate and characterize potential symbionts/pathogens using arthropod cell lines. Microbial community structure was distinct for each tick species. Coxiella was detected as the predominant symbiont in four tick species where dual symbiosis between Coxiella and Rickettsia or Coxiella and Francisella was observed in C. vespertilionis and O. moubata, respectively. Of note, A. japonicus lacked Coxiella and instead had Occidentia massiliensis and Thiotrichales as alternative symbionts. Our study found strong correlation between tick species and life stage. We successfully isolated Oc. massiliensis and characterized potential pathogens of genera Ehrlichia and Borrelia. The results suggest that there is no consistent trend of microbiomes in relation to tick life stage that fit all tick species and that the final interpretation should be related to the balance between environmental bacterial exposure and endosymbiont ecology. Nevertheless, our findings provide insights on the ecology of tick microbiomes and basis for future investigations on the capacity of argasid ticks to carry novel pathogens with public health importance.
Collapse
|
5
|
Trevisan G, Cinco M, Trevisini S, di Meo N, Ruscio M, Forgione P, Bonin S. Borreliae Part 2: Borrelia Relapsing Fever Group and Unclassified Borrelia. BIOLOGY 2021; 10:1117. [PMID: 34827110 PMCID: PMC8615063 DOI: 10.3390/biology10111117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Borreliae of the relapsing fever group (RFG) are heterogenous and can be divided mainly into three groups according to vectors, namely the soft-tick-borne relapsing fever (STBRF) Borreliae, the hard-tick-borne relapsing fever (HTBRF) Borreliae, the louse-borne relapsing fever (LBRF) Borreliae, and the avian relapsing fever ones. With respect to the geographical distribution, the STBRF Borreliae are further subdivided into Old World and New World strains. Except for the Avian relapsing fever group Borreliae, which cause avian spirochetosis, all the others share infectivity in humans. They are indeed the etiological agent of both endemic and epidemic forms of relapsing fever, causing high spirochaetemia and fever. Vectors are primarily soft ticks of Ornithodoros spp. in the STBRF group; hard ticks, notably Ixodes sp., Amblyomma sp., Dermacentor sp., and Rhipicephalus sp., in the HTBRF group; and the louse pediculus humanus humanus in the TBRF one. A recent hypothesis was supported for a common ancestor of RFG Borreliae, transmitted at the beginning by hard-body ticks. Accordingly, STBRF Borreliae switched to use soft-bodied ticks as a vector, which was followed by the use of lice by Borrelia recurrentis. There are also new candidate species of Borreliae, at present unclassified, which are also described in this review.
Collapse
Affiliation(s)
- Giusto Trevisan
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
| | - Marina Cinco
- DSV—Department of Life Sciences, University of Trieste, 34149 Trieste, Italy;
| | - Sara Trevisini
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (M.R.)
| | - Nicola di Meo
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (M.R.)
| | - Maurizio Ruscio
- ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, 34129 Trieste, Italy; (S.T.); (M.R.)
| | - Patrizia Forgione
- UOSD Dermatologia, Centro Rif. Regionale Malattia di Hansen e Lyme, P.O. dei Pellegrini, ASL Napoli 1 Centro, 80145 Naples, Italy;
| | - Serena Bonin
- DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (G.T.); (N.d.M.)
| |
Collapse
|