1
|
Shi Y, Chen Y, Wang Y, Mo D, Ai H, Zhang J, Guo M, Qian H. Therapeutic effect of small extracellular vesicles from cytokine-induced memory-like natural killer cells on solid tumors. J Nanobiotechnology 2024; 22:447. [PMID: 39075563 PMCID: PMC11285333 DOI: 10.1186/s12951-024-02676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Small extracellular vesicles (sEV) derived from diverse natural killer (NK) cell lines have proven their exceptional antitumor activities. However, sEV from human primary NK cells, especially memory-like NK cells, are rarely utilized for cancer treatment. In this study, we obtained sEV from IL-12, IL-15 and IL-18 cultured human memory-like NK cells (mNK-sEV) that showed strong cytokine-secretory ability. It was uncovered that mNK-sEV entered cancer cells via macropinocytosis and induced cell apoptosis via caspase-dependent pathway. Compared to sEV from conventionally cultured NK cells (conNK-sEV), mNK-sEV inhibited tumor growth to a greater extent. Concomitantly, pharmacokinetics and biodistribution results validated a higher accumulation of mNK-sEV than conNK-sEV in tumors of xenografted murine models. Notably, elevated containment of granulysin (GNLY) within mNK-sEV, at least in part, may contribute to the enhanced therapeutic effect. Herein our results present that mNK-sEV can be a novel class of therapeutic reagent for effective cancer treatment.
Collapse
Affiliation(s)
- Yinghong Shi
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
- Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang, 212013, China
| | - Yanxia Chen
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yi Wang
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China
| | - Dan Mo
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China
| | - Huisheng Ai
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China
| | - Jianguo Zhang
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| | - Mei Guo
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China.
| | - Hui Qian
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Li Q, Fu X, Ge X, Tao F, Huang P, Ge M, Jin H. Antitumor Effects and Related Mechanisms of Ethyl Acetate Extracts of Polygonum perfoliatum L. Front Oncol 2019; 9:578. [PMID: 31334112 PMCID: PMC6621420 DOI: 10.3389/fonc.2019.00578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
Polygonum perfoliatum L. belongs to the genus Polygonaceae and has a long history to be used as a Chinese medicinal herb to reduce swelling, control body temperature, and promote detoxification. However, its anticancer activity and mechanisms of action have not been evaluated yet. In the present study, we used several cell lines and xenograft models from different cancers to demonstrate the broad-spectrum anticancer activity of P. perfoliatum L as well as its underlying mechanisms of action in vitro and in vivo. The ethyl acetate extract of P. perfoliatum L showed good anticancer activity and was further fractioned to obtain five active components, including PEA to PEE. Among these fractions, PEC showed the strongest cytotoxicities against various cancer cell lines. It was further observed that PEC inhibited cancer cell growth, arrested cells at G2 phase, and induced apoptosis in vitro and suppressed tumor growth and angiogenesis in vivo in a dose- and time-dependent manner. Furthermore, PEC decreased the expression of vascular endothelial growth factor (VEGF) and micro-vascular density (MVD) in tumor tissues in vivo. It also promoted the proliferation of T and B lymphocytes, increased the activities of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), enhanced the secretion of interleukin 2 (IL-2) by spleen cells, and raised the levels of IgG, IgG2a, and IgG2b antibodies in tumor-bearing mice in vivo, which were at least partially responsible for the anticancer activity of PEC. In summary, PEC has shown broad-spectrum anticancer activities without causing any host toxicity in vitro and in vivo and may be developed as a preventive and therapeutic agent against human cancer. Further studies are urgently needed to determine the anticancer compounds in PEC and their detailed molecular mechanisms.
Collapse
Affiliation(s)
- Qinglin Li
- Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.,Zhejiang Cancer Hospital, Hangzhou, China
| | | | - Xinyang Ge
- Heartland Christian School, Columbiana, OH, United States
| | - Feng Tao
- College of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Ping Huang
- Zhejiang Cancer Hospital, Hangzhou, China
| | - Minghua Ge
- Zhejiang Cancer Hospital, Hangzhou, China
| | - Hongchuan Jin
- Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Abstract
The modulation of tuberculosis (TB)-induced immunopathology caused by human immunodeficiency virus (HIV)-1 coinfection remains incompletely understood but underlies the change seen in the natural history, presentation, and prognosis of TB in such patients. The deleterious combination of these two pathogens has been dubbed a "deadly syndemic," with each favoring the replication of the other and thereby contributing to accelerated disease morbidity and mortality. HIV-1 is the best-recognized risk factor for the development of active TB and accounts for 13% of cases globally. The advent of combination antiretroviral therapy (ART) has considerably mitigated this risk. Rapid roll-out of ART globally and the recent recommendation by the World Health Organization (WHO) to initiate ART for everyone living with HIV at any CD4 cell count should lead to further reductions in HIV-1-associated TB incidence because susceptibility to TB is inversely proportional to CD4 count. However, it is important to note that even after successful ART, patients with HIV-1 are still at increased risk for TB. Indeed, in settings of high TB incidence, the occurrence of TB often remains the first presentation of, and thereby the entry into, HIV care. As advantageous as ART-induced immune recovery is, it may also give rise to immunopathology, especially in the lower-CD4-count strata in the form of the immune reconstitution inflammatory syndrome. TB-immune reconstitution inflammatory syndrome will continue to impact the HIV-TB syndemic.
Collapse
|
4
|
Mycobacterium tuberculosis-specific CD8+ T cell recall in convalescing TB subjects with HIV co-infection. Tuberculosis (Edinb) 2014; 93 Suppl:S60-5. [PMID: 24388651 DOI: 10.1016/s1472-9792(13)70012-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Memory T cell populations recover following phase I chemotherapy for tuberculosis (TB) and augment the effectiveness of antibiotics during the continuation phase of treatment. For those with human immunodeficiency virus (HIV), the CD8(+)T cells may have an especially important role in host defense to Mycobacterium tuberculosis (M.tb) as CD4(+)T cell function and/or numbers decline. Here we performed a preliminary study to investigate the impact of HIV infection status on CD8(+)T cell effector function during the convalescent TB period. Peripheral blood samples from convalescent HIV(+) and HIV(-) TB subjects were used to determine CD4(+)T cell count and monitor antigen-specific CD8(+) T cell activation of effector function (lymphoproliferation, IFN-γ, granulysin) in response to M.tb antigen. Our preliminary results suggest that HIV co-infection is associated with moderate suppression of the M.tb-specific memory CD8(+)T cell compartment in many subjects convalescent for TB. Interestingly, highly activated CD8(+)T cells were observed in recall experiments using peripheral blood from several HIV+ subjects that had low (<200 cells/mm(3)) CD4(+)T cell counts. Further investigation may provide important information for development of novel approaches to target M.tb-specific CD8(+)T cell memory to protect against TB in HIV-endemic regions.
Collapse
|
5
|
Petranovic D, Pilcic G, Valkovic T, Sotosek Tokmadzic V, Laskarin G. Perforin- and granulysin-mediated cytotoxicity and interleukin 15 play roles in neurocognitive impairment in patients with acute lymphoblastic leukaemia. Med Hypotheses 2014; 83:122-6. [PMID: 24735844 DOI: 10.1016/j.mehy.2014.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) is an aggressive disease. The course of disease is regulated by pro-inflammatory agents, and malignant cell infiltration of tissues plays a deleterious role in disease progression, greatly impacting quality of life, especially in the cognitive domains. Our hypothesis is that significant serum concentrations of interleukin 15 (IL-15) are responsible for higher expression of adhesion molecules on endothelial cells of blood-brain barrier (BBB) which allow leukaemia cells and/or normal lymphocytes the infiltration into the brain. In brain tissue these cells could be stimulated to release perforin and granulysin causing induction of apoptosis in brain cells that are involved in complex neural signalling mediated by neurotransmitters, and consequent fine cognitive impairment. Such changes could be detected early, even before notable clinical psycho-neurological or radiological changes in patients with ALL. To evaluate this hypothesis we propose measuring cognitive function using Complex Reactiometer Drenovac (CRD) scores in patients with ALL. The expression of different adhesion molecules on BBB as well as presence and distribution of different lymphocytes in brain tissue will be analyzed. We will then correlate CRD scores with levels of IL-15 and the percentages of T cells, natural killer T cells, and natural killer cells expressing perforin and/or granulysin proteins. CRD is a scientifically recognised and highly sensitive psychometric laboratory test based on the complex chronometric mathematical measuring of speed of reaction to various stimuli. It provides an objective assessment of cognitive functions from the most complex mental activities to the simplest reaction reflexes. Early recognition of cognitive dysfunction might be important when selecting the most appropriate chemotherapy and/or radiotherapy regimens, and could allow for the implementation of preventive measures against further deterioration in cognitive function and quality of life in patients with ALL.
Collapse
Affiliation(s)
- Duska Petranovic
- Department of Internal Medicine, Hematology, Clinical Hospital Center Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia
| | - Gorazd Pilcic
- Department of Internal Medicine, Hematology, Clinical Hospital Center Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia
| | - Toni Valkovic
- Department of Internal Medicine, Hematology, Clinical Hospital Center Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia
| | - Vlatka Sotosek Tokmadzic
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia; Department of Anesthesiology, Reanimatology and Intensive Care, Faculty of Medicine, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia
| | - Gordana Laskarin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia; Division of Cardiology, Hospital for Medical Rehabilitation of the Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", 51410 Opatija, M. Tita 188, Croatia.
| |
Collapse
|
6
|
Abstract
Mycobacterium tuberculosis (M.tb) is the second leading infectious cause of death worldwide and the primary cause of death in people living with HIV/AIDS. There are several excellent animal models employed to study tuberculosis (TB), but many have limitations for reproducing human pathology and none are amenable to the direct study of HIV/M.tb co-infection. The humanized mouse has been increasingly employed to explore HIV infection and other pathogens where animal models are limiting. Our goal was to develop a small animal model of M.tb infection using the bone marrow, liver, thymus (BLT) humanized mouse. NOD-SCID/γc(null) mice were engrafted with human fetal liver and thymus tissue, and supplemented with CD34(+) fetal liver cells. Excellent reconstitution, as measured by expression of the human CD45 pan leukocyte marker by peripheral blood populations, was observed at 12 weeks after engraftment. Human T cells (CD3, CD4, CD8), as well as natural killer cells and monocyte/macrophages were all observed within the human leukocyte (CD45(+)) population. Importantly, human T cells were functionally competent as determined by proliferative capacity and effector molecule (e.g. IFN-γ, granulysin, perforin) expression in response to positive stimuli. Animals infected intranasally with M.tb had progressive bacterial infection in the lung and dissemination to spleen and liver from 2-8 weeks post infection. Sites of infection in the lung were characterized by the formation of organized granulomatous lesions, caseous necrosis, bronchial obstruction, and crystallization of cholesterol deposits. Human T cells were distributed throughout the lung, liver, and spleen at sites of inflammation and bacterial growth and were organized to the periphery of granulomas. These preliminary results demonstrate the potential to use the humanized mouse as a model of experimental TB.
Collapse
|
7
|
Endsley JJ, Actor JK. Texas Tuberculosis Research Symposium 2011: collaborative efforts within the State of Texas toward elimination of TB. Tuberculosis (Edinb) 2011; 91 Suppl 1:S1-2. [PMID: 22192869 DOI: 10.1016/j.tube.2011.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|