1
|
Schwarz MGA, Corrêa PR, Mendonça-Lima L. Transcriptional Profiling of Homologous Recombination Pathway Genes in Mycobacterium bovis BCG Moreau. Microorganisms 2023; 11:2534. [PMID: 37894192 PMCID: PMC10609372 DOI: 10.3390/microorganisms11102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 10/29/2023] Open
Abstract
Mycobacterium bovis BCG Moreau is the main Brazilian strain for vaccination against tuberculosis. It is considered an early strain, more like the original BCG, whereas BCG Pasteur, largely used as a reference, belongs to the late strain clade. BCG Moreau, contrary to Pasteur, is naturally deficient in homologous recombination (HR). In this work, using a UV exposure test, we aimed to detect differences in the survival of various BCG strains after DNA damage. Transcription of core and regulatory HR genes was further analyzed using RT-qPCR, aiming to identify the molecular agent responsible for this phenotype. We show that early strains share the Moreau low survival rate after UV exposure, whereas late strains mimic the Pasteur phenotype, indicating that this increase in HR efficiency is linked to the evolutionary clade history. Additionally, RT-qPCR shows that BCG Moreau has an overall lower level of these transcripts than Pasteur, indicating a correlation between this gene expression profile and HR efficiency. Further assays should be performed to fully identify the molecular mechanism that may explain this differential phenotype between early and late BCG strains.
Collapse
Affiliation(s)
- Marcos Gustavo Araujo Schwarz
- Laboratório de Biologia Molecular Aplicada à Micobactérias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil; (P.R.C.); (L.M.-L.)
| | | | | |
Collapse
|
2
|
Yimer SA, Kalayou S, Homberset H, Birhanu AG, Riaz T, Zegeye ED, Lutter T, Abebe M, Holm-Hansen C, Aseffa A, Tønjum T. Lineage-Specific Proteomic Signatures in the Mycobacterium tuberculosis Complex Reveal Differential Abundance of Proteins Involved in Virulence, DNA Repair, CRISPR-Cas, Bioenergetics and Lipid Metabolism. Front Microbiol 2020; 11:550760. [PMID: 33072011 PMCID: PMC7536270 DOI: 10.3389/fmicb.2020.550760] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/17/2020] [Indexed: 01/17/2023] Open
Abstract
Despite the discovery of the tubercle bacillus more than 130 years ago, its physiology and the mechanisms of virulence are still not fully understood. A comprehensive analysis of the proteomes of members of the human-adapted Mycobacterium tuberculosis complex (MTBC) lineages 3, 4, 5, and 7 was conducted to better understand the evolution of virulence and other physiological characteristics. Unique and shared proteomic signatures in these modern, pre-modern and ancient MTBC lineages, as deduced from quantitative bioinformatics analyses of high-resolution mass spectrometry data, were delineated. The main proteomic findings were verified by using immunoblotting. In addition, analysis of multiple genome alignment of members of the same lineages was performed. Label-free peptide quantification of whole cells from MTBC lineages 3, 4, 5, and 7 yielded a total of 38,346 unique peptides derived from 3092 proteins, representing 77% coverage of the predicted proteome. MTBC lineage-specific differential expression was observed for 539 proteins. Lineage 7 exhibited a markedly reduced abundance of proteins involved in DNA repair, type VII ESX-3 and ESX-1 secretion systems, lipid metabolism and inorganic phosphate uptake, and an increased abundance of proteins involved in alternative pathways of the TCA cycle and the CRISPR-Cas system as compared to the other lineages. Lineages 3 and 4 exhibited a higher abundance of proteins involved in virulence, DNA repair, drug resistance and other metabolic pathways. The high throughput analysis of the MTBC proteome by super-resolution mass spectrometry provided an insight into the differential expression of proteins between MTBC lineages 3, 4, 5, and 7 that may explain the slow growth and reduced virulence, metabolic flexibility, and the ability to survive under adverse growth conditions of lineage 7.
Collapse
Affiliation(s)
- Solomon Abebe Yimer
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Coalition for Epidemic Preparedness Innovations, Oslo, Norway
| | - Shewit Kalayou
- Division of Laboratory Medicine, Department of Microbiology, Oslo University Hospital, Oslo, Norway.,International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Håvard Homberset
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Alemayehu Godana Birhanu
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Division of Laboratory Medicine, Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tahira Riaz
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Ephrem Debebe Zegeye
- NORCE Norwegian Research Centre AS, Centre for Applied Biotechnology, Bergen, Norway
| | - Timo Lutter
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Carol Holm-Hansen
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Tone Tønjum
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Division of Laboratory Medicine, Department of Microbiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Schwarz MGA, Corrêa PR, Malaga W, Guilhot C, Mendonça-Lima L. Mycobacterium bovis BCG moreau is naturally deficient in homologous recombination. Tuberculosis (Edinb) 2020; 123:101956. [PMID: 32741533 DOI: 10.1016/j.tube.2020.101956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/15/2022]
Abstract
The ability to perform genetic manipulation of mycobacteria is important for characterization of gene function. Homologous recombination-based protocols are frequently used for reverse genetics studies with mycobacteria. It is known that Mycobacteriumbovis BCG Russia, closely related to M. bovis BCG Moreau, is a natural recA deficient strain and is non-permissive to homologous recombination assays. In this work we show that M. bovis BCG Moreau is also deficient in homologous recombination, shown by a specialized transduction assay, but this phenotype can be reverted by complementation with heterologous recombinases, using a recombineering protocol. Sequence analysis of the genes known to be involved in homologous recombination annotated in the genome of BCG Moreau detected no differences compared to the genome of BCG Pasteur. Further studies are needed in order to determine the exact mechanism underlying this deficiency in BCG Moreau.
Collapse
Affiliation(s)
| | - Paloma Rezende Corrêa
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| | - Wladimir Malaga
- Centre National de La Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.
| | - Christophe Guilhot
- Centre National de La Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France.
| | - Leila Mendonça-Lima
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Mittal P, Sinha R, Kumar A, Singh P, Ngasainao MR, Singh A, Singh IK. Focusing on DNA Repair and Damage Tolerance Mechanisms in Mycobacterium tuberculosis: An Emerging Therapeutic Theme. Curr Top Med Chem 2020; 20:390-408. [PMID: 31924156 DOI: 10.2174/1568026620666200110114322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/02/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is one such disease that has become a nuisance in the world scenario and one of the most deadly diseases of the current times. The etiological agent of tuberculosis, Mycobacterium tuberculosis (M. tb) kills millions of people each year. Not only 1.7 million people worldwide are estimated to harbor M. tb in the latent form but also 5 to 15 percent of which are expected to acquire an infection during a lifetime. Though curable, a long duration of drug regimen and expense leads to low patient adherence. The emergence of multi-, extensive- and total- drug-resistant strains of M. tb further complicates the situation. Owing to high TB burden, scientists worldwide are trying to design novel therapeutics to combat this disease. Therefore, to identify new drug targets, there is a growing interest in targeting DNA repair pathways to fight this infection. Thus, this review aims to explore DNA repair and damage tolerance as an efficient target for drug development by understanding M. tb DNA repair and tolerance machinery and its regulation, its role in pathogenesis and survival, mutagenesis, and consequently, in the development of drug resistance.
Collapse
Affiliation(s)
- Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Rajesh Sinha
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Amit Kumar
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Pooja Singh
- Public Health Research Institute, NJMS-Rutgers University, New Jersey, United States
| | - Moses Rinchui Ngasainao
- Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India.,Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.,Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
5
|
Naveed M, Mehboob MZ, Hussain A, Ikram K, Talat A, Zeeshan N. Structural and Functional Annotation of Conserved Virulent Hypothetical Proteins in Chlamydia Trachomatis: An In-Silico Approach. Curr Bioinform 2019. [DOI: 10.2174/1574893613666181107111259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Though after a start of genome sequencing most of the protein sequences are deposited in databases, some proteins remain to be unannotated and functionally uncharacterized. Chlamydia trachomatis L2C is a gram-negative pathogen bacterium involved in causing severe disorders like lymphogranuloma venereum, nongonococcal urethritis, and cervicitis. <P> Objectives: Analyzing and annotating the hypothetical proteins can help to understand its pathogenicity and therapeutic hotspots. Its genome encodes a total of 221 hypothetical proteins and out of these, 14 hypothetical proteins are declared as virulent by virulence prediction server (VirulentPred). <P> Methods: In this study, the functional and structural analysis was carried out by conserve domain finding servers, protein function annotators and physiochemical properties predictors. Proteinprotein interactions studies revealed the involvement of these virulent HPs in a number of pathways, which would be of interest for drug designers. <P> Results: Classifier tool was used to classify the virulent hypothetical proteins into enzymes, membrane protein, transporter and regulatory protein groups. <P> Conclusion: Our study would help to understand the mechanisms of pathogenesis and new potential therapeutic targets for a couple of diseases caused by C. trachomatis.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | | | - Aadil Hussain
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Khadija Ikram
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Attha Talat
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| |
Collapse
|
6
|
Singh A, Vijayan M, Nagaraju G. RecG wed : A probable novel regulator in the resolution of branched DNA structures in mycobacteria. IUBMB Life 2018; 70:786-794. [PMID: 30240108 DOI: 10.1002/iub.1881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/31/2023]
Abstract
Structure-specific helicases, such as RecG, play an important role in the resolution of recombination intermediates. A bioinformatic analysis of mycobacterial genomes led to the identification of a protein (RecGwed ) with a C-terminal "edge" domain, similar to the wedge domain of RecG. RecGwed is predominately found in the phylum Actinobacteria and in few human pathogens. Mycobacterium smegmatis RecGwed was able to bind branched DNA structures in vitro but failed to interact with single- or double-stranded DNA. The expression of recGwed in M. smegmatis cells was up-regulated during stationary phase/UV damage and down-regulated during MMS/H2 O2 treatment. These observations indicate the possible involvement of RecGwed in transactions during recombination events, that proceed though branched DNA intermediates. © 2018 IUBMB Life, 70(8):786-794, 2018.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
7
|
Singh A, Vijayan M, Varshney U. Distinct properties of a hypoxia specific paralog of single stranded DNA binding (SSB) protein in mycobacteria. Tuberculosis (Edinb) 2018. [PMID: 29523318 DOI: 10.1016/j.tube.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In addition to the canonical Single Stranded DNA Binding (SSBa) protein, many bacterial species, including mycobacteria, have a paralogous SSBb. The SSBb proteins have not been well characterized. While in B. subtilis, SSBb has been shown to be involved in genetic recombination; in S. coelicolor it mediates chromosomal segregation during sporulation. Sequence analysis of SSBs from mycobacterial species suggests low conservation of SSBb proteins, as compared to the conservation of SSBa proteins. Like most bacterial SSB proteins, M. smegmatis SSBb (MsSSBb) forms a stable tetramer. However, solution studies indicate that MsSSBb is less stable to thermal and chemical denaturation than MsSSBa. Also, in contrast to the 5-20 fold differences in DNA binding affinity between paralogous SSBs in other organisms, MsSSBb is only about two-fold poorer in its DNA binding affinity than MsSSBa. The expression levels of ssbB gene increased during UV and hypoxic stresses, while the levels of ssbA expression declined. A direct physical interaction of MsSSBb and RecA, mediated by the C-terminal tail of MsSSBb, was also established. The results obtained in this study indicate a role of MsSSBb in recombination repair during stress.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advamced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
8
|
Huang YH, Huang CY. SAAV2152 is a single-stranded DNA binding protein: the third SSB in Staphylococcus aureus. Oncotarget 2018; 9:20239-20254. [PMID: 29755648 PMCID: PMC5945547 DOI: 10.18632/oncotarget.24427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/31/2018] [Indexed: 11/25/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play crucial roles in DNA replication, repair, and recombination. Unlike E. coli, which contains only one type of SSB (EcSSB), some bacteria have two paralogous SSBs, namely, SsbA and SsbB. In this study, we found the third SSB-like protein in Staphylococcus aureus, SAAV2152, which was designated as SaSsbC. SaSsbC is a protein of 131 amino acids and shares 38%, 36%, and 33% sequence identity to SaSsbB, SaSsbA, and EcSSB, respectively. Gene map analysis showed that unlike the E. coli ssb gene, which is adjacent to uvrA gene, the S. aureus ssb gene SAAV2152 is flanked by the putative SceD, the putative YwpF, and fabZ genes. A homology model showed that SaSsbC consists of the classic oligonucleotide/oligosaccharide-binding fold at the N-terminus. At the C-terminus, SaSsbC did not exhibit sequence similarity to that of EcSSB. Electrophoretic mobility shift analysis showed that SaSsbC formed a single complex with ssDNA of different lengths. Mutational analysis revealed that Tyr36, Tyr47, Phe53, and Tyr81 in SaSsbC are at positions that structurally correspond to the important residues of EcSSB for binding to ssDNA and are also critical for SaSsbC to bind ssDNA. Unlike EcSSB, which can stimulate EcPriA, SaSsbC did not affect the activity of SaPriA. In addition, SaSsbA inhibitor 9-methyl-2,3,7-trihydroxy-6-fluorone (NSC5426) could inhibit the ssDNA-binding activity of SaSsbC with IC50 of 78 μM. In conclusion, this study has identified and characterized SAAV2152 as a kind of SSB, and further research can directly focus on determining its actual physiological role in S. aureus.
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
9
|
Singh A. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2017; 163:1740-1758. [PMID: 29171825 DOI: 10.1099/mic.0.000578] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic integrity of Mycobacterium tuberculosis is continuously threatened by the harsh survival conditions inside host macrophages, due to immune and antibiotic stresses. Faithful genome maintenance and repair must be accomplished under stress for the bacillus to survive in the host, necessitating a robust DNA repair system. The importance of DNA repair systems in pathogenesis is well established. Previous examination of the M. tuberculosis genome revealed homologues of almost all the major DNA repair systems, i.e. nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent developments in the field have pointed to the presence of novel proteins and pathways in mycobacteria. Homologues of archeal mismatch repair proteins were recently reported in mycobacteria, a pathway previously thought to be absent. RecBCD, the major nuclease-helicase enzymes involved in HR in E. coli, were implicated in the single-strand annealing (SSA) pathway. Novel roles of archeo-eukaryotic primase (AEP) polymerases, previously thought to be exclusive to NHEJ, have been reported in BER. Many new proteins with a probable role in DNA repair have also been discovered. It is now realized that the DNA repair systems in M. tuberculosis are highly evolved and have redundant backup mechanisms to mend the damage. This review is an attempt to summarize our current understanding of the DNA repair systems in M. tuberculosis.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
10
|
Reiche MA, Warner DF, Mizrahi V. Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis. Front Mol Biosci 2017; 4:75. [PMID: 29184888 PMCID: PMC5694481 DOI: 10.3389/fmolb.2017.00075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), an infectious disease which results in approximately 10 million incident cases and 1.4 million deaths globally each year, making it the leading cause of mortality from infection. An effective frontline combination chemotherapy exists for TB; however, this regimen requires the administration of four drugs in a 2 month long intensive phase followed by a continuation phase of a further 4 months with two of the original drugs, and is only effective for the treatment of drug-sensitive TB. The emergence and global spread of multidrug-resistant (MDR) as well as extensively drug-resistant (XDR) strains of M. tuberculosis, and the complications posed by co-infection with the human immunodeficiency virus (HIV) and other co-morbidities such as diabetes, have prompted urgent efforts to develop shorter regimens comprising new compounds with novel mechanisms of action. This demands that researchers re-visit cellular pathways and functions that are essential to M. tuberculosis survival and replication in the host but which are inadequately represented amongst the targets of current anti-mycobacterial agents. Here, we consider the DNA replication and repair machinery as a source of new targets for anti-TB drug development. Like most bacteria, M. tuberculosis encodes a complex array of proteins which ensure faithful and accurate replication and repair of the chromosomal DNA. Many of these are essential; so, too, are enzymes in the ancillary pathways of nucleotide biosynthesis, salvage, and re-cycling, suggesting the potential to inhibit replication and repair functions at multiple stages. To this end, we provide an update on the state of chemotherapeutic inhibition of DNA synthesis and related pathways in M. tuberculosis. Given the established links between genotoxicity and mutagenesis, we also consider the potential implications of targeting DNA metabolic pathways implicated in the development of drug resistance in M. tuberculosis, an organism which is unusual in relying exclusively on de novo mutations and chromosomal rearrangements for evolution, including the acquisition of drug resistance. In that context, we conclude by discussing the feasibility of targeting mutagenic pathways in an ancillary, “anti-evolution” strategy aimed at protecting existing and future TB drugs.
Collapse
Affiliation(s)
- Michael A Reiche
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Singh A, Varshney U, Vijayan M. Structure of the second Single Stranded DNA Binding protein (SSBb) from Mycobacterium smegmatis. J Struct Biol 2016; 196:448-454. [DOI: 10.1016/j.jsb.2016.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 10/21/2022]
|