1
|
Pipalović G, Filić Ž, Ćehić M, Paradžik T, Zahradka K, Crnolatac I, Vujaklija D. Impact of C-terminal domains of paralogous single-stranded DNA binding proteins from Streptomyces coelicolor on their biophysical properties and biological functions. Int J Biol Macromol 2024; 268:131544. [PMID: 38614173 DOI: 10.1016/j.ijbiomac.2024.131544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Single-stranded DNA-binding proteins (SSB) are crucial in DNA metabolism. While Escherichia coli SSB is extensively studied, the significance of its C-terminal domain has only recently emerged. This study explored the significance of C-domains of two paralogous Ssb proteins in S. coelicolor. Mutational analyses of C-domains uncovered a novel role of SsbA during sporulation-specific cell division and demonstrated that the C-tip is non-essential for survival. In vitro methods revealed altered biophysical and biochemical properties of Ssb proteins with modified C-domains. Determined hydrodynamic properties suggested that the C-domains of SsbA and SsbB occupy a globular position proposed to mediate cooperative binding. Only SsbA was found to form biomolecular condensates independent of the C-tip. Interestingly, the truncated C-domain of SsbA increased the molar enthalpy of unfolding. Additionally, calorimetric titrations revealed that C-domain mutations affected ssDNA binding. Moreover, this analysis showed that the SsbA C-tip aids binding most likely by regulating the position of the flexible C-domain. It also highlighted ssDNA-induced conformational mobility restrictions of all Ssb variants. Finally, the gel mobility shift assay confirmed that the intrinsically disordered linker is essential for cooperative binding of SsbA. These findings highlight the important role of the C-domain in the functioning of SsbA and SsbB proteins.
Collapse
Affiliation(s)
- Goran Pipalović
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Želimira Filić
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Mirsada Ćehić
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Tina Paradžik
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Ksenija Zahradka
- Division of Molecular Biology, Institute Ruđer Bošković, Zagreb, Croatia
| | - Ivo Crnolatac
- Division of Organic Chemistry and Biochemistry, Institute Ruđer Bošković, Zagreb, Croatia.
| | - Dušica Vujaklija
- Division of Physical Chemistry, Institute Ruđer Bošković, Zagreb, Croatia.
| |
Collapse
|
2
|
Shitikov E, Bespiatykh D, Malakhova M, Bespyatykh J, Bodoev I, Vedekhina T, Zaychikova M, Veselovsky V, Klimina K, Ilina E, Varizhuk A. Genome-Wide Transcriptional Response of Mycobacterium smegmatis MC2155 to G-Quadruplex Ligands BRACO-19 and TMPyP4. Front Microbiol 2022; 13:817024. [PMID: 35308348 PMCID: PMC8931766 DOI: 10.3389/fmicb.2022.817024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022] Open
Abstract
G-quadruplexes (G4s) are non-canonical DNA structures that could be considered as potential therapeutic targets for antimicrobial compounds, also known as G4-stabilizing ligands. While some of these ligands are shown in vitro to have a stabilizing effect, the precise mechanism of antibacterial action has not been fully investigated. Here, we employed genome-wide RNA-sequencing to analyze the response of Mycobacterium smegmatis to inhibitory concentrations of BRACO-19 and TMPyP4 G4 ligands. The expression profile changed (FDR < 0.05, log2FC > |1|) for 822 (515↑; 307↓) genes in M. smegmatis in response to BRACO-19 and for 680 (339↑; 341↓) genes in response to TMPyP4. However, the analysis revealed no significant ligand-induced changes in the expression levels of G4-harboring genes, genes under G4-harboring promoters, or intergenic regions located on mRNA-like or template strands. Meanwhile, for the BRACO-19 ligand, we found significant changes in the replication and repair system genes, as well as in iron metabolism genes which is, undoubtedly, evidence of the induced stress. For the TMPyP4 compound, substantial changes were found in transcription factors and the arginine biosynthesis system, which may indicate multiple biological targets for this compound.
Collapse
|
3
|
Chandran AV, Srikalaivani R, Paul A, Vijayan M. Biochemical characterization of Mycobacterium tuberculosisLexA and structural studies of its C-terminal segment. Acta Crystallogr D Struct Biol 2019; 75:41-55. [DOI: 10.1107/s2059798318016066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/13/2018] [Indexed: 03/21/2023] Open
Abstract
LexA is a protein that is involved in the SOS response. The protein fromMycobacterium tuberculosisand its mutants have been biochemically characterized and the structures of their catalytic segments have been determined. The protein is made up of an N-terminal segment, which includes the DNA-binding domain, and a C-terminal segment encompassing much of the catalytic domain. The two segments are defined by a cleavage site. Full-length LexA, the two segments, two point mutants involving changes in the active-site residues (S160A and K197A) and another mutant involving a change at the cleavage site (G126D) were cloned and purified. The wild-type protein autocleaves at basic pH, while the mutants do not. The wild-type and the mutant proteins dimerize and bind DNA with equal facility. The C-terminal segment also dimerizes, and it also shows a tendency to form tetramers. The C-terminal segment readily crystallized. The crystals obtained from attempts involving the full-length protein and its mutants contained only the C-terminal segment including the catalytic core and a few residues preceding it, in a dimeric or tetrameric form, indicating protein cleavage during the long period involved in crystal formation. Modes of tetramerization of the full-length protein similar to those observed for the catalytic core are feasible. A complex ofM. tuberculosisLexA and the cognate SOS box could be modeled in which the mutual orientation of the two N-terminal domains differs from that in theEscherichia coliLexA–DNA complex. These results represent the first thorough characterization ofM. tuberculosisLexA and provide definitive information on its structure and assembly. They also provide leads for further exploration of this important protein.
Collapse
|
4
|
Singh A, Vijayan M, Nagaraju G. RecG wed : A probable novel regulator in the resolution of branched DNA structures in mycobacteria. IUBMB Life 2018; 70:786-794. [PMID: 30240108 DOI: 10.1002/iub.1881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/31/2023]
Abstract
Structure-specific helicases, such as RecG, play an important role in the resolution of recombination intermediates. A bioinformatic analysis of mycobacterial genomes led to the identification of a protein (RecGwed ) with a C-terminal "edge" domain, similar to the wedge domain of RecG. RecGwed is predominately found in the phylum Actinobacteria and in few human pathogens. Mycobacterium smegmatis RecGwed was able to bind branched DNA structures in vitro but failed to interact with single- or double-stranded DNA. The expression of recGwed in M. smegmatis cells was up-regulated during stationary phase/UV damage and down-regulated during MMS/H2 O2 treatment. These observations indicate the possible involvement of RecGwed in transactions during recombination events, that proceed though branched DNA intermediates. © 2018 IUBMB Life, 70(8):786-794, 2018.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
5
|
Yamada H, Yamaguchi M, Igarashi Y, Chikamatsu K, Aono A, Murase Y, Morishige Y, Takaki A, Chibana H, Mitarai S. Mycolicibacterium smegmatis, Basonym Mycobacterium smegmatis, Expresses Morphological Phenotypes Much More Similar to Escherichia coli Than Mycobacterium tuberculosis in Quantitative Structome Analysis and CryoTEM Examination. Front Microbiol 2018; 9:1992. [PMID: 30258411 PMCID: PMC6145149 DOI: 10.3389/fmicb.2018.01992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/07/2018] [Indexed: 01/05/2023] Open
Abstract
A series of structome analyses, that is, quantitative and three-dimensional structural analysis of a whole cell at the electron microscopic level, have already been achieved individually in Exophiala dermatitidis, Saccharomyces cerevisiae, Mycobacterium tuberculosis, Myojin spiral bacteria, and Escherichia coli. In these analyses, sample cells were processed through cryo-fixation and rapid freeze-substitution, resulting in the exquisite preservation of ultrastructures on the serial ultrathin sections examined by transmission electron microscopy. In this paper, structome analysis of non pathogenic Mycolicibacterium smegmatis, basonym Mycobacterium smegmatis, was performed. As M. smegmatis has often been used in molecular biological experiments and experimental tuberculosis as a substitute of highly pathogenic M. tuberculosis, it has been a task to compare two species in the same genus, Mycobacterium, by structome analysis. Seven M. smegmatis cells cut into serial ultrathin sections, and, totally, 220 serial ultrathin sections were examined by transmission electron microscopy. Cell profiles were measured, including cell length, diameter of cell and cytoplasm, surface area of outer membrane and plasma membrane, volume of whole cell, periplasm, and cytoplasm, and total ribosome number and density per 0.1 fl cytoplasm. These data are based on direct measurement and enumeration of exquisitely preserved single cell structures in the transmission electron microscopy images, and are not based on the calculation or assumptions from biochemical or molecular biological indirect data. All measurements in M. smegmatis, except cell length, are significantly higher than those of M. tuberculosis. In addition, these data may explain the more rapid growth of M. smegmatis than M. tuberculosis and contribute to the understanding of their structural properties, which are substantially different from M. tuberculosis, relating to the expression of antigenicity, acid-fastness, and the mechanism of drug resistance in relation to the ratio of the targets to the corresponding drugs. In addition, data obtained from cryo-transmission electron microscopy examination were used to support the validity of structome analysis. Finally, our data strongly support the most recent establishment of the novel genus Mycolicibacterium, into which basonym Mycobacterium smegmatis has been classified.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | | | - Yuriko Igarashi
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Yoshiro Murase
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Yuta Morishige
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Akiko Takaki
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Japan
- Department of Basic Mycobacteriology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
6
|
Singh A. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2017; 163:1740-1758. [PMID: 29171825 DOI: 10.1099/mic.0.000578] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic integrity of Mycobacterium tuberculosis is continuously threatened by the harsh survival conditions inside host macrophages, due to immune and antibiotic stresses. Faithful genome maintenance and repair must be accomplished under stress for the bacillus to survive in the host, necessitating a robust DNA repair system. The importance of DNA repair systems in pathogenesis is well established. Previous examination of the M. tuberculosis genome revealed homologues of almost all the major DNA repair systems, i.e. nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent developments in the field have pointed to the presence of novel proteins and pathways in mycobacteria. Homologues of archeal mismatch repair proteins were recently reported in mycobacteria, a pathway previously thought to be absent. RecBCD, the major nuclease-helicase enzymes involved in HR in E. coli, were implicated in the single-strand annealing (SSA) pathway. Novel roles of archeo-eukaryotic primase (AEP) polymerases, previously thought to be exclusive to NHEJ, have been reported in BER. Many new proteins with a probable role in DNA repair have also been discovered. It is now realized that the DNA repair systems in M. tuberculosis are highly evolved and have redundant backup mechanisms to mend the damage. This review is an attempt to summarize our current understanding of the DNA repair systems in M. tuberculosis.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|