1
|
Mi J, Wu X, Liang J. The advances in adjuvant therapy for tuberculosis with immunoregulatory compounds. Front Microbiol 2024; 15:1380848. [PMID: 38966394 PMCID: PMC11222340 DOI: 10.3389/fmicb.2024.1380848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Tuberculosis (TB) is a chronic bacterial disease, as well as a complex immune disease. The occurrence, development, and prognosis of TB are not only related to the pathogenicity of Mycobacterium tuberculosis (Mtb), but also related to the patient's own immune state. The research and development of immunotherapy drugs can effectively regulate the body's anti-TB immune responses, inhibit or eliminate Mtb, alleviate pathological damage, and facilitate rehabilitation. This paper reviews the research progress of immunotherapeutic compounds for TB, including immunoregulatory compounds and repurposing drugs, and points out the existing problems and future research directions, which lays the foundation for studying new agents for host-directed therapies of TB.
Collapse
Affiliation(s)
- Jie Mi
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jianqin Liang
- Department of Tuberculosis, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
MAKHIJANI SHIVANI. REVITALIZING THERAPEUTICS: DRUG REPURPOSING AS A COST-EFFECTIVE STRATEGY FOR DRUG DEVELOPMENT. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICS 2024:56-61. [DOI: 10.22159/ijap.2024v16i3.49581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The process of developing new drugs is known for being drawn-out, expensive, risky, and having a high attrition rate. Drug repurposing has grown in favor recently as a practical way to speed up the development of new medicines while reducing the costs and time constraints associated with traditional drug research. The description of this study's pharmacological repurposing highlights its promise as a practical method to fill gaps in the market and revitalize treatment options. This review provides a full analysis of the ground-breaking tactic of repurposing medications, supported by numerous cases that demonstrate its revolutionary potential. We examine instances of repurposed drugs, such as thalidomide, sildenafil, and metformin, that have performed astoundingly well in a range of therapeutic settings despite being used outside of their original scope.
Overall, the paper's main goal-to study pharmacological repurposing as a potentially successful strategy for revitalizing treatments-is, succinctly summarized in this abstract. It highlights the potential benefits of this approach and how it might be used in the pharmaceutical industry's ongoing quest for more inexpensive and effective medicine development.
Collapse
|
3
|
Schelz Z, Muddather HF, Zupkó I. Repositioning of HMG-CoA Reductase Inhibitors as Adjuvants in the Modulation of Efflux Pump-Mediated Bacterial and Tumor Resistance. Antibiotics (Basel) 2023; 12:1468. [PMID: 37760764 PMCID: PMC10525194 DOI: 10.3390/antibiotics12091468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Efflux pump (EP)-mediated multidrug resistance (MDR) seems ubiquitous in bacterial infections and neoplastic diseases. The diversity and lack of specificity of these efflux mechanisms raise a great obstacle in developing drugs that modulate efflux pumps. Since developing novel chemotherapeutic drugs requires large investments, drug repurposing offers a new approach that can provide alternatives as adjuvants in treating resistant microbial infections and progressive cancerous diseases. Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also known as statins, are promising agents in this respect. Originally, statins were used in the therapy of dyslipidemia and for the prevention of cardiovascular diseases; however, extensive research has recently been performed to elucidate the functions of statins in bacterial infections and cancers. The mevalonate pathway is essential in the posttranslational modification of proteins related to vital eukaryotic cell functions. In this article, a comparative review is given about the possible role of HMG-CoA reductase inhibitors in managing diseases of bacterial and neoplastic origin. Molecular research and clinical studies have proven the justification of statins in this field. Further well-designed clinical trials are urged to clarify the significance of the contribution of statins to the lower risk of disease progression in bacterial infections and cancerous diseases.
Collapse
Affiliation(s)
| | | | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.)
| |
Collapse
|
4
|
Singh D, Singh A, Chawla PA. An overview of current strategies and future prospects in drug repurposing in tuberculosis. EXPLORATION OF MEDICINE 2023. [DOI: 10.37349/emed.2023.00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
A large number of the population faces mortality as an effect of tuberculosis (TB). The line of treatment in the management of TB faces a jolt with ever-increasing multi-drug resistance (DR) cases. Further, the drugs engaged in the treatment of TB are associated with different toxicities, such as renal and hepatic toxicity. Different combinations are sought for effective anti-tuberculosis (anti-TB) effects with a decrease in toxicity. In this regard, drug repurposing has been very promising in improving the efficacy of drugs by enhancement of bioavailability and widening the safety margin. The success in drug repurposing lies in specified binding and inhibition of a particular target in the drug molecule. Different drugs have been repurposed for various ailments like cancer, Alzheimer’s disease, acquired immunodeficiency syndrome (AIDS), hair loss, etc. Repurposing in anti-TB drugs holds great potential too. The use of whole-cell screening assays and the availability of large chemical compounds for testing against Mycobacterium tuberculosis poses a challenge in this development. The target-based discovery of sites has emerged in the form of phenotypic screening as ethionamide R (EthR) and malate synthase inhibitors are similar to pharmaceuticals. In this review, the authors have thoroughly described the drug repurposing techniques on the basis of pharmacogenomics and drug metabolism, pathogen-targeted therapy, host-directed therapy, and bioinformatics approaches for the identification of drugs. Further, the significance of repurposing of drugs elaborated on large databases has been revealed. The role of genomics and network-based methods in drug repurposing has been also discussed in this article.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| |
Collapse
|
5
|
Akki M, Reddy DS, Katagi KS, Kumar A, Devarajegowda HC, M SK, Babagond V, Mane S, Joshi SD. Synthesis of coumarin-thioether conjugates as potential anti-tubercular agents: Their molecular docking and X-ray crystal studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Khoza LJ, Kumar P, Dube A, Demana PH, Choonara YE. Insights into Innovative Therapeutics for Drug-Resistant Tuberculosis: Host-Directed Therapy and Autophagy Inducing Modified Nanoparticles. Int J Pharm 2022; 622:121893. [PMID: 35680110 PMCID: PMC9169426 DOI: 10.1016/j.ijpharm.2022.121893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 10/25/2022]
|
7
|
Mishra R, Krishan S, Siddiqui AN, Kapur P, Khayyam KU, Rai PK, Sharma M. Impact of metformin therapy on health-related quality of life outcomes in tuberculosis patients with diabetes mellitus in India: A prospective study. Int J Clin Pract 2021; 75:e13864. [PMID: 33236505 DOI: 10.1111/ijcp.13864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To assess the impact of metformin use on health-related quality of life (HRQoL) in tuberculosis (TB) patients who are presented with type 2 diabetes mellitus (T2DM). METHODOLOGY In this community-based prospective study, TB patients attending Hakeem Abdul Hameed Centenary Hospital, New Delhi (India) and had comorbidity of T2DM between April 2018 and July 2019 were enrolled. Patients were divided into metformin users and metformin non-users on the basis of the presence of metformin in their routine as antidiabetic drug(s). HRQoL was determined using a validated TB-specific tool (Dhingra and Rajpal-12 scale ie, DR-12) consists of symptom and socio-psychological and exercise adaptation domains. The HRQoL scores were compared at pretreatment (1st visit), end of intensive phase (2nd visit) and end of treatment (3rd visit) between the two groups. RESULTS A total of 120 patients were enrolled, of which 24 were excluded as they did not respond at follow-up visits. Among the metformin users (n = 48) the mean age of patients was 47.56 years and 62.50% was males. Among the metformin non-users (n = 48), the mean age of patients was 49.02 years and 54.10% was males. The baseline characteristics were similar in both groups except for the substance used history (P = .025), literacy level (P = .048) and BMI (P = .028). Metformin users demonstrated significant improvement in symptom scores (2nd visit: P < .001; 3rd visit: P = .001) and socio-psychological and exercise adaptation scores (2nd visit: P < .0001; 3rd visit: P < .0001) as compared with metformin non-users at 2nd visit and 3rd visit. Overall, scores were also found to be significantly improved in metformin users (2nd visit: P < .001; 3rd visit: P = .001). CONCLUSION Metformin therapy exerted favourable effects on HRQoL in patients with TB and T2DM and can be recommended as an adjuvant antitubercular drug in TB patients with co-morbidity of T2DM, unless contraindicated.
Collapse
Affiliation(s)
- Ritu Mishra
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shri Krishan
- Department of Drug Safety and Pharmacovigilance, Syneos Health, Gurgaon, India
| | - Ali Nasir Siddiqui
- Department of Pharmaceutical Medicine, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Prem Kapur
- Department of Medicine, Hamdard Institute of Medical Sciences and Research & Hakeem Abdul Hameed Centenary Hospital, Jamia Hamdard, New Delhi, India
| | - Khalid Umer Khayyam
- Department of Epidemiology & Public Health, National Institute of Tuberculosis & Respiratory Diseases, New Delhi, India
| | | | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Triazole-containing hybrids with anti- Mycobacterium tuberculosis potential - Part I: 1,2,3-Triazole. Future Med Chem 2021; 13:643-662. [PMID: 33619989 DOI: 10.4155/fmc-2020-0301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis regimens currently applied in clinical practice require months of multidrug therapy, which imposes a major challenge of patient compliance and drug resistance development. Moreover, because of the increasing emergence of hard-to-treat tuberculosis, this disease continues to be a significant threat to the human population. 1,2,3-triazole as a privileged structure has been widely used as an effective template for drug discovery, and 1,2,3-triazole-containing hybrids that can simultaneously act on dual or multiple targets in Mycobacterium tuberculosis have the potential to circumvent drug resistance, enhance efficacy, reduce side effects and improve pharmacokinetic as well as pharmacodynamic profiles. Thus, 1,2,3-triazole-containing hybrids are useful scaffolds for the development of antitubercular agents. This review aims to highlight recent advances of 1,2,3-triazole-containing hybrids with potential activity against various forms of M. tuberculosis, covering articles published between 2015 and 2020. The structure-activity relationship and the mechanism of action are also discussed to facilitate further rational design of more effective drug candidates.
Collapse
|
9
|
Reddy DS, Kongot M, Kumar A. Coumarin hybrid derivatives as promising leads to treat tuberculosis: Recent developments and critical aspects of structural design to exhibit anti-tubercular activity. Tuberculosis (Edinb) 2021; 127:102050. [PMID: 33540334 DOI: 10.1016/j.tube.2020.102050] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is a highly contagious airborne disease with nearly 25% of the world's population infected with it. Challenges such as multi drug resistant TB (MDR-TB), extensive drug resistant TB (XDR-TB) and in rare cases totally drug resistant TB (TDR-TB) emphasizes the critical and urgent need in developing novel TB drugs. Moreover, the prolonged and multi drug treatment regime suffers a major drawback due to high toxicity and vulnerability in TB patients. This calls for intensified research efforts in identifying novel molecular scaffolds which can combat these issues with minimal side effects. In this pursuit, researchers have screened many bio-active molecules among which coumarin have been identified as promising candidates for TB drug discovery and development. Coumarins are naturally occurring compounds known for their low toxicity and varied biological activity. The biological spectrum of coumarin has intrigued medicinal researchers to investigate coumarin scaffolds for their relevance as anti-TB drugs. In this review we focus on the recent developments of coumarin and its critical aspects of structural design required to exhibit anti-tubercular (anti-TB) activity. The information provided will help medicinal chemists to design and identify newer molecular analogs for TB treatment and also broadens the scope of exploring future generation potent yet safer coumarin based anti-TB agents.
Collapse
Affiliation(s)
- Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore, 562112, India
| | - Manasa Kongot
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore, 562112, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore, 562112, India.
| |
Collapse
|
10
|
Touhidinia M, Sefid F, Bidakhavidi M. Design of a Multi-epitope Vaccine Against Acinetobacter baumannii Using Immunoinformatics Approach. Int J Pept Res Ther 2021; 27:2417-2437. [PMID: 34483787 PMCID: PMC8397861 DOI: 10.1007/s10989-021-10262-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2021] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii is one of the most successful pathogens causing nosocomial infections and has significantly multidrug-resistant. So far, there are no certain treatments to protect against infection with A. baumannii, therefore an effective A. baumannii vaccine needed. The purpose of this study was to predict antigenic epitopes of CarO protein for designing the A. baumannii vaccine using immunoinformatics analysis. CarO protein is one of the most important factors in the resistance against the antibiotic Carbapenem. In this study, T and B-cell epitopes of CarO protein were predicted and screened based on the antigenicity, toxicity, allergenicity features. The epitopes were linked by suitable linkers. Four different adjuvants were attached to the vaccine constructs which among them, vaccine construct 3 was chosen to predict the secondary and the 3D structure of the vaccine. The refinement process was performed to improve the quality of the 3D model structure; the validation process is performed using the Ramachandran plot and ProSA z-score. The designed vaccine's binding affinity to six various HLA molecules and TLR 2 and TLR4 were evaluated by molecular docking. Finally, in silico gene cloning was performed in the pET28a (+) vector. The findings suggest that the vaccine may be a promising vaccine to prevent A. baumannii infection.
Collapse
Affiliation(s)
- Maryam Touhidinia
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Fatemeh Sefid
- Department of Medical Genetics, Shahid Sadoughi University of Medical Science, Yazd, Iran
- Department of Biology, Science and Art University, Yazd, Iran
| | - Mozhgan Bidakhavidi
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
- Department of Nursing, Nursing and Midwifery Research, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
11
|
Mourenza Á, Gil JA, Mateos LM, Letek M. Novel Treatments against Mycobacterium tuberculosis Based on Drug Repurposing. Antibiotics (Basel) 2020; 9:E550. [PMID: 32872158 PMCID: PMC7557778 DOI: 10.3390/antibiotics9090550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis is the leading cause of death, worldwide, due to a bacterial pathogen. This respiratory disease is caused by the intracellular pathogen Mycobacterium tuberculosis and produces 1.5 million deaths every year. The incidence of tuberculosis has decreased during the last decade, but the emergence of MultiDrug-Resistant (MDR-TB) and Extensively Drug-Resistant (XDR-TB) strains of M. tuberculosis is generating a new health alarm. Therefore, the development of novel therapies based on repurposed drugs against MDR-TB and XDR-TB have recently gathered significant interest. Recent evidence, focused on the role of host molecular factors on M. tuberculosis intracellular survival, allowed the identification of new host-directed therapies. Interestingly, the mechanism of action of many of these therapies is linked to the activation of autophagy (e.g., nitazoxanide or imatinib) and other well-known molecular pathways such as apoptosis (e.g., cisplatin and calycopterin). Here, we review the latest developments on the identification of novel antimicrobials against tuberculosis (including avermectins, eltrombopag, or fluvastatin), new host-targeting therapies (e.g., corticoids, fosfamatinib or carfilzomib) and the host molecular factors required for a mycobacterial infection that could be promising targets for future drug development.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
| | - José A. Gil
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Luis M. Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| |
Collapse
|
12
|
Dubey KK, Indu, Sharma M. Reprogramming of antibiotics to combat antimicrobial resistance. Arch Pharm (Weinheim) 2020; 353:e2000168. [DOI: 10.1002/ardp.202000168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/04/2020] [Accepted: 07/11/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Kashyap K. Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
- School of Biotechnology Jawaharlal Nehru University New Delhi India
| | - Indu
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| | - Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology Central University of Haryana Mahendergarh Haryana India
| |
Collapse
|