1
|
Sahu R, Vishnuraj MR, Srinivas C, Dadimi B, Megha GK, Pollumahanti N, Malik SS, Vaithiyanathan S, Rawool DB, Barbuddhe SB. Development and comparative evaluation of droplet digital PCR and quantitative PCR for the detection and quantification of Chlamydia psittaci. J Microbiol Methods 2021; 190:106318. [PMID: 34592374 DOI: 10.1016/j.mimet.2021.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Chlamydia psittaci is a zoonotic pathogen mainly transmitted by psittacine birds and poultry. The low shedding rate of the pathogen in the apparently healthy birds and human clinical cases may result in false-negative results. In the present study, a droplet digital PCR (ddPCR) assay was developed and compared with optimized quantitative PCR (qPCR) for the detection of C. psittaci from the clinical samples. The ddPCR assay was found to be comparatively more sensitive than the qPCR, wherein the limit of detection (LOD) of ddPCR was upto 2.4 copies of the DNA template, whereas, the qPCR could detect upto 38 copies of the DNA template in the reaction mixture. Overall, the developed ddPCR assay was found to be robust, specific, and could reliably quantify up to 17.8 copies of the DNA template. Finally, the applicability of the developed ddPCR assay was tested by screening the field samples (n = 124), comprising lung tissues from dead poultry and feral birds; pooled faecal samples from the free-living birds, commercial and backyard poultry farms; pharyngeal and cloacal swabs collected from the duck farms. Of these, a total of seven samples were found to be positive by the ddPCR, whereas, three samples could be detected as positive using the qPCR. The developed ddPCR could serve as a reliable screening tool, particularly in those clinical samples wherein the shedding of C. psittaci is substantially very low.
Collapse
Affiliation(s)
- Radhakrishna Sahu
- ICAR-National Research Centre on Meat, Chengicherla, Hyderabad 500092, India; Department of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243122, India
| | - M R Vishnuraj
- ICAR-National Research Centre on Meat, Chengicherla, Hyderabad 500092, India
| | - Ch Srinivas
- ICAR-National Research Centre on Meat, Chengicherla, Hyderabad 500092, India
| | - Bhargavi Dadimi
- Department of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243122, India
| | - G K Megha
- Department of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243122, India
| | | | - Satyaveer S Malik
- Department of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Izatnagar 243122, India
| | - S Vaithiyanathan
- ICAR-National Research Centre on Meat, Chengicherla, Hyderabad 500092, India
| | - Deepak B Rawool
- ICAR-National Research Centre on Meat, Chengicherla, Hyderabad 500092, India
| | | |
Collapse
|
2
|
Liebler-Tenorio EM, Lambertz J, Ostermann C, Sachse K, Reinhold P. Regeneration of Pulmonary Tissue in a Calf Model of Fibrinonecrotic Bronchopneumonia Induced by Experimental Infection with Chlamydia Psittaci. Int J Mol Sci 2020; 21:ijms21082817. [PMID: 32316620 PMCID: PMC7215337 DOI: 10.3390/ijms21082817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022] Open
Abstract
Pneumonia is a cause of high morbidity and mortality in humans. Animal models are indispensable to investigate the complex cellular interactions during lung injury and repair in vivo. The time sequence of lesion development and regeneration is described after endobronchial inoculation of calves with Chlamydia psittaci. Calves were necropsied 2-37 days after inoculation (dpi). Lesions and presence of Chlamydia psittaci were investigated using histology and immunohistochemistry. Calves developed bronchopneumonia at the sites of inoculation. Initially, Chlamydia psittaci replicated in type 1 alveolar epithelial cells followed by an influx of neutrophils, vascular leakage, fibrinous exudation, thrombosis and lobular pulmonary necrosis. Lesions were most extensive at 4 dpi. Beginning at 7 dpi, the number of chlamydial inclusions declined and proliferation of cuboidal alveolar epithelial cells and sprouting of capillaries were seen at the periphery of necrotic tissue. At 14 dpi, most of the necrosis had been replaced with alveoli lined with cuboidal epithelial cells resembling type 2 alveolar epithelial cells and mild fibrosis, and hyperplasia of organized lymphoid tissue were observed. At 37 dpi, regeneration of pulmonary tissue was nearly complete and only small foci of remodeling remained. The well-defined time course of development and regeneration of necrotizing pneumonia allows correlation of morphological findings with clinical data or treatment regimen.
Collapse
Affiliation(s)
- Elisabeth M. Liebler-Tenorio
- Institute for Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburgerstr. 96a, 07743 Jena, Germany; (J.L.); (C.O.); (K.S.); (P.R.)
- Correspondence: ; Tel.: +49-3641-804-2411
| | - Jacqueline Lambertz
- Institute for Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburgerstr. 96a, 07743 Jena, Germany; (J.L.); (C.O.); (K.S.); (P.R.)
- Chemisches und Veterinäruntersuchungsamt Rhein-Ruhr-Wupper (CVUA-RRW), Deutscher Ring 100, 47798 Krefeld, Germany
| | - Carola Ostermann
- Institute for Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburgerstr. 96a, 07743 Jena, Germany; (J.L.); (C.O.); (K.S.); (P.R.)
| | - Konrad Sachse
- Institute for Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburgerstr. 96a, 07743 Jena, Germany; (J.L.); (C.O.); (K.S.); (P.R.)
- Institute of Bioinformatics, Friedrich-Schiller-Universität Jena, Leutragraben 1, 07743 Jena, Germany
| | - Petra Reinhold
- Institute for Molecular Pathogenesis, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburgerstr. 96a, 07743 Jena, Germany; (J.L.); (C.O.); (K.S.); (P.R.)
| |
Collapse
|
3
|
Circulating and broncho-alveolar interleukin-6 in relation to body temperature in an experimental model of bovine Chlamydia psittaci infection. PLoS One 2017; 12:e0189321. [PMID: 29281663 PMCID: PMC5744922 DOI: 10.1371/journal.pone.0189321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022] Open
Abstract
In rodent models of experimentally induced fever, the important role of interleukin-6 (IL-6) as a circulating endogenous pyrogen is well established. Studies employing larger animal species and real infections are scarce. Therefore, we assessed bioactive IL-6 in peripheral blood and in broncho-alveolar lavage fluid (BALF) of calves after intra-bronchial inoculation with vital Chlamydia psittaci (Cp), with inactivated Cp, or with BGM cells. Only calves inoculated with vital Cp developed fever (peak at 2-3 days after challenge) and significantly increased IL-6 activity. Controls inoculated with either inactivated Cp or BGM cells also expressed increased bioactive IL-6, but no fever developed. Activity of IL-6 in BALF was significantly higher compared to blood serum. This experimental model of Cp infection revealed no apparent relation between IL-6 in blood and body temperature, but did reveal a relation between IL-6 and other markers of inflammation in BALF. We conclude that a local inflammatory response in the lungs of infected calves caused fever, which developed by mechanisms including other mediators besides IL-6.
Collapse
|
4
|
Radomski N, Einenkel R, Müller A, Knittler MR. Chlamydia-host cell interaction not only from a bird's eye view: some lessons fromChlamydia psittaci. FEBS Lett 2016; 590:3920-3940. [DOI: 10.1002/1873-3468.12295] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Nadine Radomski
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| | - Rebekka Einenkel
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| | - Anne Müller
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| | - Michael R Knittler
- Friedrich-Loeffler-Institut; Institute of Immunology; Isle of Riems Germany
| |
Collapse
|
5
|
Lohr M, Prohl A, Ostermann C, Diller R, Greub G, Reinhold P. Effect of Parachlamydia acanthamoebae on pulmonary function parameters in a bovine respiratory model. Vet J 2016; 213:9-15. [PMID: 27240907 DOI: 10.1016/j.tvjl.2016.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
Abstract
The aim of this study was to evaluate pulmonary dysfunction induced by experimental infection with Parachlamydia acanthamoebae in calves. Intrabronchial inoculation with P. acanthamoebae was performed in 31 calves aged 2-3 months old at two different challenge doses of 10(8) and 10(10) inclusion-forming units (IFU) per animal. Control animals received heat inactivated bacteria. The effects on pulmonary gas exchange were determined by arterial blood gas analysis and haemoximetry during the 7 days post inoculation (DPI). For pulmonary function testing (PFT), impulse oscillometry, capnography, and measurement of O2 uptake were undertaken in spontaneously breathing animals 7 and 3 days before inoculation and were repeated until 10 DPI. In the early phase after challenge (1-3 DPI), mild hypoxaemia occurred, which was accompanied by a significant reduction in both tidal and alveolar volumes (each related to bodyweight, BW). In parallel, expiratory flow rate and specific ventilation (i.e. minute ventilation related to O2 uptake) were significantly increased. Minute and alveolar ventilations (each related to metabolic BW) increased significantly due to higher respiratory rates, lasting until 4 and 5 DPI, respectively. Oxygen uptake was slightly reduced during the first 2 days after challenge, but increased significantly during the recovery phase, from 4 to 8 DPI. No deterioration in respiratory mechanics or acid-base balance was observed. Respiratory infection with 10(10) IFU P. acanthamoebae per calf induced mild respiratory dysfunction, mainly characterised by hypoxaemia. The study's findings do not indicate severe pathophysiological consequences of P. acanthamoebae infection on pulmonary function in the bovine host.
Collapse
Affiliation(s)
- M Lohr
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - A Prohl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - C Ostermann
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - R Diller
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - G Greub
- Centre for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| | - P Reinhold
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany.
| |
Collapse
|
6
|
Prohl A, Wolf K, Weber C, Müller KE, Menge C, Sachse K, Rödel J, Reinhold P, Berndt A. Kinetics of Local and Systemic Leucocyte and Cytokine Reaction of Calves to Intrabronchial Infection with Chlamydia psittaci. PLoS One 2015; 10:e0135161. [PMID: 26252769 PMCID: PMC4529195 DOI: 10.1371/journal.pone.0135161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/18/2015] [Indexed: 11/19/2022] Open
Abstract
Infection of cattle with chlamydiae is ubiquitous and, even in the absence of clinical sequeleae, has a quantifiable negative impact on livestock productivity. Despite recent progress, our knowledge about immune response mechanisms capable of counteracting the infection and preventing its detrimental effects is still limited. A well-established model of bovine acute respiratory Chlamydia (C.) psittaci infection was used here to characterize the kinetics of the local and systemic immune reactions in calves. In the course of two weeks following inoculation, leukocyte surface marker expression was monitored by flow cytometry in blood and bronchoalveolar lavage fluid (BALF). Immune-related protein and receptor transcription were determined by quantitative real-time reverse transcription PCR in blood, BALF and lung tissue. An early increase of IL2RA, IL10 and HSPA1A mRNA expressions was followed by a rise of lymphocytes, monocytes, and granulocytes exhibiting activated phenotypes in blood. Monocytes showed elevated expression rates of CD11b, CD14 and MHC class II. The rates of CD62L expression on CD8hi T cells in blood and on CD4+ T cells in BALF were also augmented and peaked between 2 and 4 dpi. Notably, CD25 antigen expression was significantly elevated, not only on CD8dim/CD62L+ and CD8-/CD62L+ cells in blood, but also on granulocytes in blood and BALF between 2–3 dpi. From 4 dpi onwards, changes declined and the calves recovered from the infection until 10 dpi. The findings highlight the effectiveness of rapid local and systemic immune reaction and indicate activated T cells, monocytes and granulocytes being essential for rapid eradication of the C. psittaci infection.
Collapse
Affiliation(s)
- Annette Prohl
- Institute of Molecular Pathogenesis at ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Jena, Germany
| | - Katharina Wolf
- Institute of Medical Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Corinna Weber
- Ruminant and Swine Clinic at Freie Universität Berlin, Berlin, Germany
| | - Kerstin E. Müller
- Ruminant and Swine Clinic at Freie Universität Berlin, Berlin, Germany
| | - Christian Menge
- Institute of Molecular Pathogenesis at ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Jena, Germany
| | - Konrad Sachse
- Institute of Molecular Pathogenesis at ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Jena, Germany
| | - Jürgen Rödel
- Institute of Medical Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Jena, Germany
- * E-mail:
| | - Angela Berndt
- Institute of Molecular Pathogenesis at ‘Friedrich-Loeffler-Institut’ (Federal Research Institute for Animal Health), Jena, Germany
| |
Collapse
|
7
|
Abstract
Background Cumulating reports suggest that acute phase proteins (APPs) do not only play a role as systemic inflammatory mediators, but are also expressed in different tissues as local reaction to inflammatory stimuli. The present study aimed to evaluate presence and changes in luminal lung concentrations of the APPs haptoglobin (Hp), lipopolysaccharide binding protein (LBP), C-reactive protein (CRP), and lactoferrin (Lf) in calves with an acute respiratory disease experimentally induced by Chlamydia (C.) psittaci. Results Intra-bronchial inoculation of the pathogen resulted in a consistent respiratory illness. In venous blood of the infected calves (n = 13), concentrations of plasma proteins and serum LBP were assessed (i) before exposure and (ii) 8 times within 14 days after inoculation (dpi). Increasing clinical illness correlated significantly with increasing LBP—and decreasing albumin concentrations in blood, both verifying a systemic acute phase response. Broncho-alveolar lavage fluid (BALF) was obtained from all 13 calves experimentally infected with C. psittaci at 4, 9 and 14 dpi, and from 6 uninfected healthy calves. Concentrations of bovine serum albumin (BSA), Hp, LBP, CRP and Lf in BALF were determined by ELISA. In infected animals, absolute concentrations of LBP and Hp in BALF correlated significantly with the respiratory score. The quotient [LBP]/[BSA] in BALF peaked significantly in acutely infected animals (4 dpi), showed a time-dependent decrease during the recovery phase (9-14 dpi), and was significantly higher compared to healthy controls. Concentrations of Hp and Lf in BALF as well as [Hp]/[BSA]—and [Lf]/[BSA]-quotients decreased during the study in infected animals, but were never higher than in healthy controls. CRP concentrations and [CRP]/[BSA]-quotient did not express significant differences between infected and healthy animals or during the course of infection. Conclusion In conclusion, absolute concentrations of LBP in blood and BALF as well as the quotient [LBP]/[BSA] in BALF perfectly paralleled the clinical course of respiratory illness after infection. Beside LBP, the suitability of Hp and Lf as local biomarkers of respiratory infections in cattle and their role in the local response to pathogens is worth further investigation, while CRP does not seem to play a role in local defense mechanisms of the bovine lung.
Collapse
|
8
|
Identification of in vivo-induced bacterial protein antigens during calf infection with Chlamydia psittaci. Int J Med Microbiol 2015; 305:310-21. [DOI: 10.1016/j.ijmm.2014.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/19/2014] [Accepted: 12/20/2014] [Indexed: 01/21/2023] Open
|
9
|
Enrofloxacin and macrolides alone or in combination with rifampicin as antimicrobial treatment in a bovine model of acute Chlamydia psittaci infection. PLoS One 2015; 10:e0119736. [PMID: 25768665 PMCID: PMC4358964 DOI: 10.1371/journal.pone.0119736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
Chlamydia psittaci is a zoonotic bacterium with a wide host range that can cause respiratory disease in humans and cattle. In the present study, effects of treatment with macrolides and quinolones applied alone or in combination with rifampicin were tested in a previously established bovine model of respiratory C. psittaci infection. Fifty animals were inoculated intrabronchially at the age of 6-8 weeks. Seven served as untreated controls, the others were assigned to seven treatment groups: (i) rifampicin, (ii) enrofloxacin, (iii) enrofloxacin + rifampicin, (iv) azithromycin, (v) azithromycin + rifampicin, (vi) erythromycin, and (vii) erythromycin + rifampicin. Treatment started 30 hours after inoculation and continued until 14 days after inoculation (dpi), when all animals were necropsied. The infection was successful in all animals and sufficient antibiotic levels were detected in blood plasma and tissue of the treated animals. Reisolation of the pathogen was achieved more often from untreated animals than from other groups. Nevertheless, pathogen detection by PCR was possible to the same extent in all animals and there were no significant differences between treated and untreated animals in terms of local (i.e., cell count and differentiation of BALF-cells) and systemic inflammation (i.e. white blood cells and concentration of acute phase protein LBP), clinical signs, and pathological findings at necropsy. Regardless of the reduced reisolation rate in treated animals, the treatment of experimentally induced respiratory C. psittaci infection with enrofloxacin, azithromycin or erythromycin alone or in combination with rifampicin was without obvious benefit for the host, since no significant differences in clinical and pathological findings or inflammatory parameters were detected and all animals recovered clinically within two weeks.
Collapse
|
10
|
Lohr M, Prohl A, Ostermann C, Liebler-Tenorio E, Schroedl W, Aeby S, Greub G, Reinhold P. A bovine model of a respiratory Parachlamydia acanthamoebae infection. Pathog Dis 2015; 73:1-14. [PMID: 24989139 DOI: 10.1111/2049-632x.12201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2014] [Indexed: 12/01/2022] Open
Abstract
The aim of this study was to evaluate the pathogenicity of Parachlamydia (P.) acanthamoebae as a potential agent of lower respiratory tract disease in a bovine model of induced lung infection. Intrabronchial inoculation with P. acanthamoebae was performed in healthy calves aged 2-3 months using two challenge doses: 10(8) and 10(10) bacteria per animal. Controls received 10(8) heat-inactivated bacteria. Challenge with 10(8) viable Parachlamydia resulted in a mild degree of general indisposition, whereas 10(10) bacteria induced a more severe respiratory illness becoming apparent 1-2 days post inoculation (dpi), affecting 9/9 (100%) animals and lasting for 6 days. The extent of macroscopic pulmonary lesions was as high as 6.6 (6.0)% [median (range)] of lung tissue at 2-4 dpi and correlated with parachlamydial genomic copy numbers detected by PCR, and with bacterial load estimated by immunohistochemistry in lung tissue. Clinical outcome, acute phase reactants, pathological findings and bacterial load exhibited an initial dose-dependent effect on severity. Animals fully recovered from clinical signs of respiratory disease within 5 days. The bovine lung was shown to be moderately susceptible to P. acanthamoebae, exhibiting a transient pneumonic inflammation after intrabronchial challenge. Further studies are warranted to determine the precise pathophysiologic pathways of host-pathogen interaction.
Collapse
Affiliation(s)
- Markus Lohr
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Annette Prohl
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Carola Ostermann
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Elisabeth Liebler-Tenorio
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Wieland Schroedl
- Institute of Bacteriology and Mycology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Sébastien Aeby
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| |
Collapse
|
11
|
Prohl A, Lohr M, Ostermann C, Liebler-Tenorio E, Berndt A, Schroedl W, Rothe M, Schubert E, Sachse K, Reinhold P. Evaluation of antimicrobial treatment in a bovine model of acute Chlamydia psittaci infection: tetracycline versus tetracycline plus rifampicin. Pathog Dis 2015; 73:1-12. [PMID: 25113145 DOI: 10.1111/2049-632x.12212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial treatment of chlamydial infections is known to be of limited efficacy. In this study, effects of doxycycline (D), usually the drug of choice, were compared with the combined therapy of doxycycline and rifampicin (R) in a bovine model of respiratory Chlamydia psittaci infection. After intrabronchial inoculation of the pathogen, 30 animals were assigned to five groups (n = 6 per group): untreated controls, monotherapy with D (5 mg kg(-1)day(-1) or 10 mg kg(-1)day(-1)), and combination therapy of D and R (600 mg day(-1)). Treatment continued until day 14 post inoculation (d.p.i.). Clinical signs, inflammatory markers, and pathological findings confirmed successful infection in all animals. Reisolation of the pathogen was possible in 4/6 untreated animals and in 4/12 animals treated with D alone until 4 d.p.i., but in none of the calves of the two D + R groups. Pathogen detection was possible in all animals without significant differences among groups. Severity of disease and time course of its resolution, assessed by clinical and pathological findings as well as inflammatory parameters, were not significantly different between untreated controls and calves receiving D alone or in combination with R. Regardless of the treatment regimen, all groups recovered clinically and cleared the infection within 2 weeks.
Collapse
Affiliation(s)
- Annette Prohl
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Markus Lohr
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Carola Ostermann
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Elisabeth Liebler-Tenorio
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Angela Berndt
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Wieland Schroedl
- Institute of Bacteriology and Mycology, Veterinary Faculty at The University of Leipzig, Leipzig, Jena, Germany
| | | | - Evelyn Schubert
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany OIE Reference Laboratory for Chlamydiosis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Konrad Sachse
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany OIE Reference Laboratory for Chlamydiosis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Jena, Germany
| |
Collapse
|
12
|
Wheelhouse N, Longbottom D. Chlamydia-related Organisms: Infection in Ruminants and Potential for Zoonotic transmission. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-014-0011-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
|
14
|
Schrödl W, Krüger S, Konstantinova-Müller T, Shehata AA, Rulff R, Krüger M. Possible effects of glyphosate on Mucorales abundance in the rumen of dairy cows in Germany. Curr Microbiol 2014; 69:817-23. [PMID: 25079171 DOI: 10.1007/s00284-014-0656-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Glyphosate (N-phosphonomethyl glycine) is registered as a herbicide for many food and non-food crops, as well as non-crop areas where total vegetation control is desired. Glyphosate influences the soil mycobiota; however, the possible effect of glyphosate residues in animal feed (soybean, corn, etc.) on animal mycobiota is almost unknown. Accordingly, the present study was initiated to investigate the mycological characteristics of dairy cows in relationship to glyphosate concentrations in urine. A total of 258 dairy cows on 14 dairy farms in Germany were examined. Glyphosate was detected in urine using ELISA. The fungal profile was analyzed in rumen fluid samples using conventional microbiological culture techniques and differentiated by MALDI-TOF mass spectrometry. LPS-binding protein (LBP) and antibodies (IgG1, IgG2, IgA, and IgM) against fungi were determined in blood using ELISA. Different populations of Lichtheimia corymbifera, Lichtheimia ramosa, Mucor, and Rhizopus were detected. L. corymbifera and L. ramosa were significantly more abundant in animals containing high glyphosate (>40 ng/ml) concentrations in urine. There were no significant changes in IgG1 and IgG2 antibodies toward isolated fungi that were related to glyphosate concentration in urine; however, IgA antibodies against L. corymbifera and L. ramosa were significantly lower in the higher glyphosate groups. Moreover, a negative correlation between IgM antibodies against L. corymbifera, L. ramosa, and Rhizopus relative to glyphosate concentration in urine was observed. LBP also was significantly decreased in animals with higher concentrations of glyphosate in their urine. In conclusion, glyphosate appears to modulate the fungal community. The reduction of IgM antibodies and LBP indicates an influence on the innate immune system of animals.
Collapse
Affiliation(s)
- Wieland Schrödl
- Institute of Bacteriology and Mycology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103, Leipzig, Germany,
| | | | | | | | | | | |
Collapse
|
15
|
Knittler MR, Berndt A, Böcker S, Dutow P, Hänel F, Heuer D, Kägebein D, Klos A, Koch S, Liebler-Tenorio E, Ostermann C, Reinhold P, Saluz HP, Schöfl G, Sehnert P, Sachse K. Chlamydia psittaci: New insights into genomic diversity, clinical pathology, host–pathogen interaction and anti-bacterial immunity. Int J Med Microbiol 2014; 304:877-93. [DOI: 10.1016/j.ijmm.2014.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
16
|
Impaired alveolar-arterial oxygen transfer is associated with reduced milk yield in primiparous post-partum dairy heifers at moderate altitude. J DAIRY RES 2014; 81:434-9. [DOI: 10.1017/s0022029914000430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Domestic cattle have limited cardiopulmonary reserve for their body size and oxygen requirements. Therefore, it is plausible that impaired alveolar-arterial gas exchange may be detrimental to energetically expensive traits such as milk production which, like all aerobic processes, requires oxygen. The degree of alveolar-arterial oxygen transfer impairment can be determined by estimating the alveolar-arterial oxygen (A-a O2) pressure gradient from arterial blood-gas tensions. The degree of oxygen transfer impairment is proportional to the A-a O2pressure gradient: the higher the A-a O2pressure gradient the less oxygen is transferred to the blood for a given ventilation rate. In this study two cohorts of Holstein-Friesian heifers were followed on one northern Colorado dairy farm. Arterial blood-gas analyses were performed up to 9 d post-calving. Heifers were grouped into quartiles based on A-a O2pressure gradient so that relative comparisons could be made. Heifers in the lowest (Q1) and highest (Q4) quartile had the least and greatest impairment of alveolar-arterial oxygen transfer, respectively. We hypothesised that milk yield over 60 d would be greatest for heifers in Q1and would decrease with quartile increments. Hyperventilation, as indicated by hypocapnia, was notable. Despite hypoxia, haematocrit was low. Alveolar-arterial O2pressure gradient was associated with milk production (P=0·03) when controlling for cohort, treatment for disease and calving difficulty score. Heifers in Q1produced 1992 kg (95% CI=1858, 2127 kg) of milk when controlling for all other variables. Relative to heifers in Q1, heifers in Q2, Q3and Q4produced 130 kg (95% CI=313, −52 kg; P=0·45), 285 kg (95% CI=474, 96 kg; P=0·004) and 169 kg (95% CI=395, −57 kg; P=0.14) less milk, respectively. In conclusion, efficacy of alveolar-arterial oxygen transfer was associated with milk yield in dairy heifers on one farm at moderate altitude.
Collapse
|
17
|
Prohl A, Ostermann C, Lohr M, Reinhold P. The bovine lung in biomedical research: visually guided bronchoscopy, intrabronchial inoculation and in vivo sampling techniques. J Vis Exp 2014. [PMID: 25046445 PMCID: PMC4211593 DOI: 10.3791/51557] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
There is an ongoing search for alternative animal models in research of respiratory medicine. Depending on the goal of the research, large animals as models of pulmonary disease often resemble the situation of the human lung much better than mice do. Working with large animals also offers the opportunity to sample the same animal repeatedly over a certain course of time, which allows long-term studies without sacrificing the animals. The aim was to establish in vivo sampling methods for the use in a bovine model of a respiratory Chlamydia psittaci infection. Sampling should be performed at various time points in each animal during the study, and the samples should be suitable to study the host response, as well as the pathogen under experimental conditions. Bronchoscopy is a valuable diagnostic tool in human and veterinary medicine. It is a safe and minimally invasive procedure. This article describes the intrabronchial inoculation of calves as well as sampling methods for the lower respiratory tract. Videoendoscopic, intrabronchial inoculation leads to very consistent clinical and pathological findings in all inoculated animals and is, therefore, well-suited for use in models of infectious lung disease. The sampling methods described are bronchoalveolar lavage, bronchial brushing and transbronchial lung biopsy. All of these are valuable diagnostic tools in human medicine and could be adapted for experimental purposes to calves aged 6-8 weeks. The samples obtained were suitable for both pathogen detection and characterization of the severity of lung inflammation in the host.
Collapse
Affiliation(s)
- Annette Prohl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut
| | - Carola Ostermann
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut
| | - Markus Lohr
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut
| | - Petra Reinhold
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut;
| |
Collapse
|
18
|
Ostermann C, Linde S, Siegling-Vlitakis C, Reinhold P. Evaluation of pulmonary dysfunctions and acid-base imbalances induced by Chlamydia psittaci in a bovine model of respiratory infection. Multidiscip Respir Med 2014; 9:10. [PMID: 24517577 PMCID: PMC4021058 DOI: 10.1186/2049-6958-9-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/18/2013] [Indexed: 01/19/2023] Open
Abstract
Background Chlamydia psittaci (Cp) is a respiratory pathogen capable of inducing acute pulmonary zoonotic disease (psittacosis) or persistent infection. To elucidate the pathogenesis of this infection, a translational large animal model was recently introduced by our group. This study aims at quantifying and differentiating pulmonary dysfunction and acid–base imbalances induced by Cp. Methods Forty-two calves were grouped in (i) animals inoculated with Cp (n = 21) and (ii) controls sham-inoculated with uninfected cell culture (n = 21). For pulmonary function testing, impulse oscillometry, capnography, and FRC (functional residual capacity) measurement were applied to spontaneously breathing animals. Variables of acid–base status were assessed in venous blood using both (i) traditional Henderson-Hasselbalch and (ii) strong ion approach. Results Both obstructive and restrictive pulmonary disorders were induced in calves experimentally inoculated with Cp. Although disorders in respiratory mechanics lasted for 8–11 days, the pattern of spontaneous breathing was mainly altered in the period of acute illness (until 4 days post inoculation, dpi). Expiration was more impaired than inspiration, resulting in elevated FRC. Ventilation was characterised by a reduction in tidal volume (−25%) combined with an increased percentage of dead space volume and a significant reduction of alveolar volume by 10%. Minute ventilation increased significantly (+50%) due to a compensatory doubling of respiratory rate. Hyperventilatory hypocapnia at 2–3 dpi resulted in slightly increased blood pH at 2 dpi. However, the acid–base equilibrium was additionally influenced by metabolic components, i.e. the systemic inflammatory response, all of which were detected with help of the strong ion theory. Decreased concentrations of albumin (2–10 dpi), a negative acute-phase marker, resulted in a decrease in the sum of non-volatile weak acids (Atot), revealing an alkalotic effect. This was counterbalanced by acidic effects of decreased strong ion difference (SID), mediated by the interplay between hypochloraemia (alkalotic effect) and hyponatraemia (acidic effect). Conclusions This bovine model was found to be suitable for studying pathophysiology of respiratory Cp infection and may help elucidating functional host-pathogen interactions in the mammalian lung.
Collapse
Affiliation(s)
- Carola Ostermann
- Institute of Molecular Pathogenesis at 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - Susanna Linde
- Institute of Molecular Pathogenesis at 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | | | - Petra Reinhold
- Institute of Molecular Pathogenesis at 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| |
Collapse
|
19
|
Ostermann C, Rüttger A, Schubert E, Schrödl W, Sachse K, Reinhold P. Infection, disease, and transmission dynamics in calves after experimental and natural challenge with a Bovine Chlamydia psittaci isolate. PLoS One 2013; 8:e64066. [PMID: 23691148 PMCID: PMC3653844 DOI: 10.1371/journal.pone.0064066] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
Chlamydia (C.) psittaci is the causative agent of psittacosis, a zoonotic disease in birds and man. In addition, C. psittaci has been repeatedly found in domestic animals and is, at least in calves, also able to induce respiratory disease. Knowledge about transmission routes in cattle herds is still deficient, and nothing is known about differences in host response after either experimental or natural exposure to C. psittaci. Therefore, our recently developed respiratory infection model was exploited to evaluate (i) the presence of the pathogen in blood, excretions and air, (ii) the possibility of transmission and (iii) clinical symptoms, acute phase and immune response until 5 weeks after exposure. In this prospective study, intrabronchial inoculation of 108 inclusion-forming units of C. psittaci (n = 21 calves) led to reproducible acute respiratory illness (of approximately one week), accompanied by a systemic inflammatory reaction with an innate immune response dominated by neutrophils. Excretion and/or exhalation of the pathogen was sufficient to transmit the infection to naïve sentinel calves (n = 3) co-housed with the infected animals. Sentinel calves developed mild to subclinical infections only. Notably, excretion of the pathogen, predominantly via feces, occurred more frequently in animals naturally exposed to C. psittaci (i.e. sentinels) as compared to experimentally-inoculated calves. The humoral immune response was generally weak, and did not emerge regularly following experimental infection; however, it was largely absent after naturally acquired infection.
Collapse
Affiliation(s)
- Carola Ostermann
- Institute of Molecular Pathogenesis at 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Jena, Germany.
| | | | | | | | | | | |
Collapse
|