1
|
Goggs R. The Use of Biomarkers to Track and Treat Critical Illness. Vet Clin North Am Small Anim Pract 2025; 55:459-482. [PMID: 40316372 DOI: 10.1016/j.cvsm.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Biomarkers are objectively measurable parameters that provide clinicians with timely information to guide diagnosis and patient management beyond that which can be obtained from routinely available data. The literature contains thousands of articles on biomarkers in veterinary medicine. Specifically reviewed are the acute kidney injury markers neutrophil gelatinase-associated lipocalin, cystatin, clusterin, and kidney-injury molecule-1; the cardiac troponins and natriuretic peptides as biomarkers of heart disease; the acute phase protein C-reactive protein; procalcitonin; inflammatory cytokines; the markers of neutrophil extracellular trap formation cell-free DNA and nucleosomes; and markers of injury to the endothelium and endothelial glycocalyx including hyaluronan.
Collapse
Affiliation(s)
- Robert Goggs
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14850, USA.
| |
Collapse
|
2
|
Ramírez-Melo LM, Estrada-Luna D, Rubio-Ruiz ME, Castañeda-Ovando A, Fernández-Martínez E, Jiménez-Osorio AS, Pérez-Méndez Ó, Carreón-Torres E. Relevance of Lipoprotein Composition in Endothelial Dysfunction and the Development of Hypertension. Int J Mol Sci 2025; 26:1125. [PMID: 39940892 PMCID: PMC11817739 DOI: 10.3390/ijms26031125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Endothelial dysfunction and chronic inflammation are determining factors in the development and progression of chronic degenerative diseases, such as hypertension and atherosclerosis. Among the shared pathophysiological characteristics of these two diseases is a metabolic disorder of lipids and lipoproteins. Therefore, the contents and quality of the lipids and proteins of lipoproteins become the targets of therapeutic objective. One of the stages of lipoprotein formation occurs through the incorporation of dietary lipids by enterocytes into the chylomicrons. Consequently, the composition, structure, and especially the properties of lipoproteins could be modified through the intake of bioactive compounds. The objective of this review is to describe the roles of the different lipid and protein components of lipoproteins and their receptors in endothelial dysfunction and the development of hypertension. In addition, we review the use of some non-pharmacological treatments that could improve endothelial function and/or prevent endothelial damage. The reviewed information contributes to the understanding of lipoproteins as vehicles of regulatory factors involved in the modulation of inflammatory and hemostatic processes, the attenuation of oxidative stress, and the neutralization of toxins, rather than only cholesterol and phospholipid transporters. For this review, a bibliographic search was carried out in different online metabases.
Collapse
Affiliation(s)
- Lisette Monsibaez Ramírez-Melo
- Nutrition Academic Area Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico;
| | - Diego Estrada-Luna
- Nursing Academic Area, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (D.E.-L.); (A.S.J.-O.)
| | - María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, Mexico City 14080, Mexico;
| | - Araceli Castañeda-Ovando
- Chemistry Academic Area, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Pachuca 42039, Hidalgo, Mexico;
| | - Eduardo Fernández-Martínez
- Medicine Academic Area, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca 42039, Hidalgo, Mexico;
| | - Angélica Saraí Jiménez-Osorio
- Nursing Academic Area, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Hidalgo, Mexico; (D.E.-L.); (A.S.J.-O.)
| | - Óscar Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Mexico City 14080, Mexico;
- Tecnológico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Mexico City 14080, Mexico;
| |
Collapse
|
3
|
Wei J, Liu D, Xu T, Zhu L, Jiao S, Yuan X, Wang ZA, Li J, Du Y. Variations in metabolic enzymes cause differential changes of heparan sulfate and hyaluronan in high glucose treated cells on chip. Int J Biol Macromol 2023; 253:126627. [PMID: 37660864 DOI: 10.1016/j.ijbiomac.2023.126627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Glycocalyx dysfunction is believed as the first step in diabetic vascular disease. However, few studies have systematically investigated the influence of HG on the glycocalyx as a whole and its major constituent glycans towards one type of cell. Furthermore, most studies utilized traditional two-dimensional (2D) cultures in vitro, which can't provide the necessary fluid environment for glycocalyx. Here, we utilized vascular glycocalyx on chips to evaluate the changes of glycocalyx and its constituent glycans in HG induced HUVECs. Fluorescence microscopy showed up-regulation of hyaluronan (HA) but down-regulation of heparan sulfate (HS). By analyzing the metabolic enzymes of both glycans, a decrease in the ratio of synthetic/degradative enzymes for HA and an increase in that for HS were demonstrated. Two substrates (UDP-GlcNAc, UDP-GlcA) for the synthesis of both glycans were increased according to omics analysis. Since they were firstly pumped into Golgi apparatus to synthesize HS, less substrates may be left for HA synthesis. Furthermore, the differential changes of HA and HS were confirmed in vessel slides from db/db mice. This study would deepen our understanding of impact of HG on glycocalyx formation and diabetic vascular disease.
Collapse
Affiliation(s)
- Jinhua Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongdong Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tong Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limeng Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xubing Yuan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo A Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
4
|
Parkinson L. Fluid Therapy in Exotic Animal Emergency and Critical Care. Vet Clin North Am Exot Anim Pract 2023:S1094-9194(23)00022-1. [PMID: 37308371 DOI: 10.1016/j.cvex.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many new concepts are emerging in the understanding of fluid therapy in human and mammalian medicine, including the role of the glycocalyx, increased understanding of fluid, sodium, and chloride overload, and the advantages of colloid administration in the form of albumin. None of these concepts, however, appear to be directly applicable to non-mammalian exotic patients, and careful consideration of their alternate physiology is required when formulating fluid plans for these patients.
Collapse
Affiliation(s)
- Lily Parkinson
- Brookfield Zoo, Chicago Zoological Society, 3300 Golf Road, Brookfield, IL 60513, USA.
| |
Collapse
|
5
|
Lawrence-Mills SJ, Hezzell MJ, Adamantos SE, Chan I, Borgeat K, Payne R, Satchell S, Welsh GI, Foster RR, Finch N. Circulating hyaluronan as a marker of endothelial glycocalyx damage in dogs with myxomatous mitral valve disease and dogs in a hypercoagulable state. Vet J 2022; 285:105845. [PMID: 35640794 PMCID: PMC9587353 DOI: 10.1016/j.tvjl.2022.105845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/21/2022]
Abstract
The endothelial glycocalyx (eGlx) lines the luminal surface of endothelial cells, maintaining vascular health. Glycocalyx damage is pathophysiologically important in many diseases across species however few studies have investigated its breakdown in naturally occurring disease in dogs. The aims of the study were to investigate eGlx damage in dogs with myxomatous mitral valve disease (MMVD) diagnosed on echocardiography, and dogs in a hypercoagulable state diagnosed using thromboelastography (TEG), by measuring serum hyaluronan concentrations. Serum hyaluronan was quantified in dogs with MMVD (n = 27), hypercoagulability (n = 21), and in healthy controls dogs (n = 18). Serum hyaluronan concentrations were measured using a commercially-available ELISA validated for use in dogs. Hyaluronan concentrations were compared among groups using Kruskal-Wallis tests, and post-hoc with Dunn’s tests. Serum hyaluronan concentrations (median [range]) were significantly increased in dogs with MMVD (62.4 [22.8–201] ng/mL; P = 0.031) and hypercoagulability (92.40 [16.9–247.6] ng/mL; P < 0.001) compared to controls (45.7 [8.7–80.2] ng/mL). Measurement of serum hyaluronan concentration offers a clinically applicable marker of eGlx health and suggests the presence of eGlx damage in dogs with MMVD and dogs in a hypercoagulable state. Few studies have investigated endothelial glycocalyx breakdown in disease in dogs. Serum hyaluronan is a clinically applicable marker of endothelial glycocalyx health. Serum hyaluronan was significantly increased in dogs with mitral valve disease. Serum hyaluronan was significantly increased in dogs in a hypercoagulable state. Increased serum hyaluronan may indicate glycocalyx shedding in these diseases.
Collapse
|
6
|
Lawrence-Mills SJ, Neal CR, Satchell SC, Welsh GI, Foster RR, Finch N. Visualising the endothelial glycocalyx in dogs. Vet J 2022; 285:105844. [PMID: 35640795 PMCID: PMC9587350 DOI: 10.1016/j.tvjl.2022.105844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/28/2022]
Abstract
The endothelial glycocalyx (eGlx) lines the luminal surface of endothelial cells. It is critical in maintaining vascular health and when damaged contributes to many diseases. Its fragility makes studying the eGlx technically challenging. The current reference standard for eGlx visualisation, by electron microscopy using glutaraldehyde/Alcian blue perfusion fixation, has not been previously reported in dogs. Established techniques were applied to achieve visualisation of the eGlx in the microvasculature of reproductive tissue in five healthy dogs undergoing elective neutering. Uterine and testicular artery samples underwent perfusion fixation, in the presence of Alcian blue, prior to transmission electron microscopy imaging. Image processing software was used to determine eGlx depth. EGlx was visualised in the arteries of two dogs, one testicular and one uterine, with median (range) eGlx depths of 68.2 nm (32.1–122.9 nm) and 47.6 nm (26.1–129.4 nm) respectively. Study of the eGlx is technically challenging, particularly its direct visualisation in clinical samples. Further research is needed to develop more clinically applicable techniques to measure eGlx health. Canine glycocalyx has not previously been visualised using the reference technique. The endothelial glycocalyx was visualised in dog uterine and testicular arteries. Direct visualisation of the endothelial glycocalyx was technically challenging.
Collapse
|